
PULRICH FRANK THE MEMO OBJECTMODELLING

LANGUAGE (MEMO-OML)

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 10

Juni 1998

ULRICH FRANK THE MEMO OBJECTMODELLING

LANGUAGE (MEMO-OML)

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 10

Juni 1998

Die Arbeitsberichte des Instituts für Wirtschaftsinfor-
matik dienen der Darstellung vorläufiger Ergebnisse,
die i.d.R. noch für spätere Veröffentlichungen überar-
beitet werden. Die Autoren sind deshalb für kritische
Hinweise dankbar.

Alle Rechte vorbehalten. Insbesondere die der Über-
setzung, des Nachdruckes, des Vortrags, der Entnah-
me von Abbildungen und Tabellen - auch bei nur
auszugsweiser Verwertung.

The "Arbeitsberichte des Instituts für Wirtschaftsin-
formatik" comprise preliminary results which will
usually be revised for subsequent publications. Criti-
cal comments would be appreciated by the authors.

All rights reserved. No part of this report may be re-
produced by any means, or translated.

Arbeitsberichte des Instituts für
Wirtschaftsinformatik
Herausgegeben von / Edited by:

Prof. Dr. Ulrich Frank
Prof. Dr. J. Felix Hampe

Bezugsquelle / Source of Supply:

Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
56075 Koblenz

Tel.: 0261-9119-480
Fax: 0261-9119-487
Email: iwi@uni-koblenz.de
WWW: http://www.uni-koblenz.de/~iwi

Anschrift des Verfassers/
Address of the author:

Prof. Dr. Ulrich Frank
Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
D-56075 Koblenz

©IWI 1998

Contents

Abstract . 5

1. Introduction . 6

2. The MEMO Meta-Metamodel . 6

2.1 The Notation . 8

2.2 Relationship to other MEMO Languages

3. Requirements . 11

4. Language Features . 14

4.1 Basic Concepts (Information Analysis) 15
4.1.1 Attributes and Services. 15
4.1.2 Associations . 15

4.2 Specialisation . 16

4.3 Additional Concepts (Object Design) . 26
4.3.1 Attributes/Associations . 26
4.3.2 Services . 27
4.3.3 Guards and Triggers. 28
4.3.4 Constraints . 28
4.3.5 Subtyping (Refinements), Interfaces, Metaclass 28
4.3.6 Organisation of Object Models . 30

4.4 Implementation-Oriented Refinements (System Design) 31
4.4.1 Stored References. 31
4.4.2 Persistence . 31
4.4.3 User Interface Concepts . 32

5. The Metamodel . 32

5.1 Basic Concepts. 33

5.2 Associations . 43

5.3 Metaclasses . 50

5.4 Organisation Concepts . 50

5.5 Stored References to Associated Objects. 52

5.6 Persistence . 53

5.7 User Interface Concepts . 53

5.8 The Graphical Notation . 55
5.8.1 Naming Conventions . 55
5.8.2 Graphical Symbols . 59

6. User Interface Classes . 64

7. Future Work . 65

References . 66

5

Abstract

"Multi Perspective Enterprise Modelling" (MEMO) is a method to support the development of
enterprise models. It suggest a number of abstractions which allow to analyse and design var-
ious interrelated aspects like corporate strategy, business processes, organizational structure
and information models. Any of those views can be modelled with a specific modelling lan-
guage or diagram technique respectively. In order to allow for a tight integration of the various
perspectives, the modelling languages suggested by MEMO are based on common concepts.
Those concepts are defined within a common meta-metamodel.

Each of the languages within the MEMO framework can be regarded as a specialised lan-
guage/terminology to serve the purpose of specific tasks. One of those tasks is the design of
information systems. For this purpose MEMO suggests an object-oriented approach. The cor-
responding language, MEMO-OML (MEMO Object Modelling Language), is intented to sup-
port analysts and designers of information systems. In the current version, it is mainly restrict-
ed to the description of static aspects. MEMO-OML provides concepts which are suited to cov-
er a large part of the software lifecycle. The concepts are specified in a semi-formal way with
a graphical metamodel. It defines the abstract syntax and semantics of MEMO-OML. Addi-
tionally, a graphical notation is introduced. The metamodel is supplemented by comprehensive
discussions of various language features.

6

1. Introduction

A modelling language is an instrument which should be designed to fit its purpose. Within the
MEMO ("Multi Perspective Enterprise Modelling") method we focus on models that support
the analysis and design ofcorporate information systems. This is usually a complex endeavour
that is not restricted to designing, implementing and integrating software. Instead, it recom-
mends to analyse and (re-) design a company’s organisation and may be its strategy. In order
to support these different views on the enterprise, MEMO offers a variety of specialised lan-
guages, for instance a language to model business processes, the organisational structure or the
corporate strategy. Within these languages the MEMO-OML is of outstanding importance.
This is for two reasons. Firstly, it is used in almost any stage of enterprise modelling. Secondly,
it serves to reconstruct the other modelling languages in order to use them within a tool (see
fig. 4).

Due to the nature of corporate information systems, we consider the design of object models
as the pivotal task. Therefore, the current version of MEMO-OML only allows to design object
models. This is different from other object-oriented modelling languages which cover various
kinds of diagrams (such as OML [FiHe96], or UML [Rat97c]). While this does not exclude, to
support additional kinds of diagrams, like message flow diagrams, state transition diagrams in
a later stage, it has to be taken into account that MEMO-OML is part of a method for enterprise
modelling. Therefore, there is more emphasis on additional domain specific aspects - like a
company’s organisation or its strategy which are covered by additional modelling languages.
The most important of those is MEMO-OrgML (Organisation Modelling Language) which
supports the design of business process models that are integrated with a corresponding object
model (for an overview see [Fra97]). There is no doubt that the value of a language depends
on the extent of its use. For this reason, it makes certainly sense to standardize modelling lan-
guages. Currently the OMG is evaluating a proposal which is backed by an industrial consor-
tium. There is evidence that this proposal, called "Unified Modelling Language" (UML,
[Rat97c]), will be standardized by the OMG eventually - although the current version can be
expected to be still revised a few times. Against this background we had to decide whether to
adopt UML or to define our own object modelling language to be used within MEMO. Al-
though we appreciate the benefits of standardization, we decided not to adopt UML. This is
mainly for three reasons. First, the development of UML has not finished yet. We do not want
to depend on a refinement process we cannot influence and which, at the same time, has a cru-
cial impact on our concepts. Second, the UML versions we have seen so far did not convince
us that UML will ever be the language of our choice. This is certainly true for the purpose of
teaching, since UML comes with a vast amount of concepts which are, in part, redundant. Fur-
thermore, some of the concepts do not seem to be as elaborated as they should be (for an eval-
uation of the UML see [FrPr97], 3.2). Third, we do not assume that the state of the art in mod-
elling languages is mature enough to allow for freezing a particular proposal (see [Fra98a]).
Instead, we would like to refine the languages we use with our (hopefully) progressing knowl-
edge of the subject.

2. The MEMO Meta-Metamodel

A modelling language can be specified in various ways - like using a grammar, a metamodel,
or a natural language description. Within MEMO we decided for the metamodelling approach,
since it does not require a paradigm shift between object and meta level. Also, a metamodel

7

provides a good foundation for the implementation of modelling tools. It is an essential goal
of MEMO to allow for a tight integration of various models within an overall enterprise model.
In order to support the integration of the modelling languages offered by MEMO, they are all
specified by concepts which are defined in a common meta-metamodel (see fig. 1). For a de-
tailled description of the meta-metamodel and its comparison to alternative meta-metamodels
see ([Fra98b]).

associated via

2,2 0,*

0,* 0,*

specialised from

0,10,*

MetaConstraint
expression: MetaExpression

identifier: MetaID

restricts composed of

0,*0,1

restricts
0,*

0,1

Fig. 1: The MEMO-OML Meta-Metamodel

0,*

MetaObject

notation: String

MetaModel

name: MetaName
version: String

annotates

0,*

MetaEntity

name: MetaName
isAbstract: Boolean

MetaConcept

naming: String

MetaElement MetaExpression MetaName

MetaComment

text: String

Specialisations must
not be cyclic.

1,1 1,1

MetaAssociation
Link

designator: MetaName

A MetaAttributeAssociationLink must not be
associated with itself or another MetaAttribu-
teAssociationLink.
The MetaMultiplicity assigned to the MetaAs-
sociation a MetaAttributeAssociation is asso-
ciated with, must have both its attributes,
minCard and maxCard, set to 1.

MetaAttribute
AssociationLink

MetaMultiplicity

minCard: Integer
maxCard: Integer

assigned to

0,1 1,1

related to

minCard >= 0
maxCard >= minCard

Constraint

Constraint
Constraint

8

2.1 The Notation

The notation used for designing metamodels is much like the one already used for the meta-
metamodel, except for a few additional symbols. In order to give a more precise, though not
intended to be formal, specification of the notation, we will differentiate between the graphical
representation and the textual designators/annotations. For the latter we use a Bachus-Naur
form. The bold faced non-terminal symbols are used within the graphical illustration of the no-
tation (see fig. 2 and fig. 3). Notice that we do not bother with specifying a few basic non-ter-
minal symbols - likeString, LowercaseLetter, UppercaseLetter, LineFeed etc.

Basic Symbols

<digit> ::= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

<positiveInteger> ::= {< digit >}

<infiniteNumber> ::= ’*’

<separator> ::= ’, ’

<lowerString> ::= <LowercaseLetter> <String>

<upperString> ::= <UppercaseLetter> <String>

Multiplicity

<maxCardinality> ::= <PositiveInteger> | <infiniteNumber>

<minCardinality> ::= <PositiveInteger>

<multiplicity> ::= ’(’ <minCardinality> separator <maxCardinality> ’)’

MetaEntity

<entityName> ::= <upperString>

Attribute

<attributeName> ::= <lowerString>

Constraint

<constraintkey> ::= ’C’ <number>

<MetaExpression> ::= <OCLExpression> | <GRALExpression> | <String>

Association

<backwardArrow> ::= ’ ’

<forwardArrow> ::= ’ ’

<designator> ::= <lowerString>

<backwardDesignator> ::= <backwardArrow> <designator>

<forwardDesignator> ::= <designator> <forwardArrow>

<forwardFirst> ::= <forwardDesignator> [< LineFeed> <backwardDesignator>]

<backwardFirst> ::= <backwardDesignator> [< LineFeed> <forwardDesignator>]

<assocDesignator > ::= forwardFirst | backwardFirst

The graphical symbols used to represent the concepts defined in the meta-metamodel are ren-
dered in fig. 2 and fig. 3.

9

Fig. 2: Notation of MEMO Metalanguages (1): Basic Symbols

instance of MetaEntity

generalisation
instance of "is subclass

of"-association

association
(two linked instances of
MetaAssociationLink)

abstract instance of MetaEntity<entityName>

instance of an instance of MetaEntity
(not permitted for abstract instances)

<entityName>

<entityName>

[<assocDesignator>]

<multiplicity><multiplicity>

attribute
(an instance of MetaAttribu-
teAssociationLink linked with
an instance of MetaAssocia-

tionLink)

<attributeName>
A

<multiplicity>•A

constraint
(instance of MetaConstraint, n

serves as a reference)

As specified in the meta-meta-
model, n is a positive integer
and has to be a unique key
within a model

comment
(instance of MetaComment)

C ##

<MetaExpression>

<String>

<constraintKey>

C ##

10

generalisation
In principle, generalisation
can be represented by any
line with an arrow that points
to the general entity.

association
The rule that applies for the rep-
resentation of associations is
similar to that for generalisation:
In principle, any line that con-
nects two entities is suitable. It
is recommended, but not man-
datory, to render the designa-
tors and multiplicities in parallel
to a line.

comment
As an option, a comment can
be assigned to a specific part
of a model by a dotted line.<String>

[<
as

so
cD

es
ig

na
to

r>
]

<multiplicity>

<multiplicity>

[<designator>]

[<
fo

rw
ar

dA
rr

ow
>

]

<
m

ul
tip

lic
ity

>
<

m
ul

tip
lic

ity
>

Fig. 3: Notation of MEMO Metalanguages (2): Additional Symbols and
Illustration of Alternative Representations

[<ass
ocD

esig
nator>

]

<multip
lic

ity
>

<multip
lic

ity
>

11

2.2 Relationship to other MEMO Languages

While any of the specialised modelling languages can be used on its own in a straightforward
way (e.g. using a sheet of paper and a pencil), it is desirable to use specialised modelling tools
in the long run. For this purpose MEMO-OML is of essential importance: It serves to trans-
form the various metamodels (including its own) into object models which are used to imple-
ment modelling tools (see fig. 2). Notice that this is not only a translation, but rather a recon-
struction, since modelling tools require information (e.g. about users, versions) that are of no
relevance for the specification of a language.

3. Requirements

In the current version, MEMO-OML focuses mainly on static aspects of object models. An ob-
ject model should provide a suitable foundation for software development. At the same time,
it should serve as an instrument for describing real world domains in an natural way. Both

Fig. 4: Meta-Metamodel for Modelling Languages and its Relationship to Object
Models for Tools

MEMO meta-metamodel

various metamodels for
special purpose model-
ling languages

representing and en-
hancing the meta-
models with object
models using MEMO-
OML

integrating partial mod-
els into a common ob-
ject model for a tool
(MEMO Center)

various diagrams/
views for tool users

instance of

represents

integrates

view on in-
stance of

Organisational Structure

MEMO-OML

Business ProcessValue Chain

MEMO-PML MEMO-...

12

kinds of requirements are stressing different aspects of a language which do not have to be in
line. Common formal requirements to be met by software, like correctness, reliability, efficien-
cy etc. suggest modelling languages with a high degree of formal rigour. Additionally, their
concepts should correspond to concepts which are used in implementation (usually: program-
ming) languages. On the other hand, conceptual models should serve as a medium to commu-
nicate with the various participants involved in a system development project. Therefore, they
should offer understandable - not to say intuitive - abstractions also for those who do not have
a background in software engineering. In other words: A modelling language should include
concepts which correspond to the perceptions and conceptualisations of those who use it.

Although the discipline of software engineering does not offer a mature theory about the proc-
ess of software development and the abstractions to be used within this process, there is a sub-
stantial amount of knowledge about relevant requirements and corresponding measures. This
is very different with the knowledge we have about the way humans perceive modelling lan-
guages, how a language effects their ability to express and understand appropriate models.
There are only a few empirical studies on how people perceive data models (for instance:
[Hit95], [GoSt90]). They suggest that many people do not regard abstractions like entity rela-
tionship models as intuitive. For this reason, the concepts we suggest are based on assumptions
which are influenced - or should we say: biased? - by our own experiences and preferences. It
is often stated that object-orientation provides a natural way to conceputalise the world. While
we could easily agree with this assumption as far as it concerns our own perception, we do not
believe that it is convincing in the end. This is at least for two reasons. Firstly, to most people
a natural language should allow for more intuitive descriptions. Secondly, there is no doubt
that the way how people perceive and evaluate language concepts varies with their personal
background. Nevertheless, there is a good reason to opt for an object-oriented approach. Com-
pared to traditional approaches to conceptual modelling, like ER modelling, object-oriented
modelling allows for a much higher level ofabstraction- by providing concepts as information
hiding or by specifying attributes with user defined classes. A higher level of abstraction not
only fosters the chance to use an abstraction that is appropriate (we could also say "natural")
in a certain modelling context. Furthermore, it allows to delay implementation decisions and
improves the maintainability of an information system.

Considering the complexity of enterprise modelling, it is hardly possible to recommend a spe-
cific way to proceed and specific abstractions to be used. However, in order to define appro-
priate abstractions, we differentiate hypothetically a set of prototypical tasks which have to be
performed during the development of corporate information systems (see fig. 3). Notice that
we do not intend to prescribe a specific way to proceed. The configuration of a particular de-
velopment process depends on various aspects: the scope of the system to be developed, the
skills of the participating analysts and domain experts, the extent and qualitiy of documents
available from the past, etc. This is also the case for the extent of a process. For instance: some-
times, a strategic or even an organisational analysis may be regarded as too time consuming.
Other projects may focus on business process redesign only. For this reason, the process model
presented in fig. 1 serves mainly to identify plausible (not: mandatory) tasks. We will then use
assumptions about these tasks - concerning participants, results to be produced etc. - to outline
a level of abstraction that seems to be appropriate for corresponding object models. It is one of
the main advantages offered by an object-oriented approach to avoid friction between the var-
ious stages of system development. This can be basically accomplished by providing the same
core concepts - namely classes and objects - for all tasks to be performed. In order to support

13

the various activities in an efficient way, those concepts have to be available on different levels
of abstraction and formalization. Hence, a modelling language should provide coherent con-
cepts with various degrees of detail and formal precision.

According to the prototypical process model presented in fig. 1, we will differentiate three de-
velopment stages of object models: analysis models, object design models, and system design
models. Again: We do not intend to enforce a particular way to proceed or particular languages
to be used/not used within a development stage.

Strategy Model

Organisational
Structure Model

Resource Model

Strategic Analysis

Organisational Analysis

Fig. 5: Occurrences of Object Models in different Stages of System Development

refers to

or
ie

nt
at

io
n

fo
r

Business
Process Model

in
pu

t f
or

Object Model (1)

Object Model (2)

Object Model (3)

Information Analysis

re
fin

es
re

fin
es

Object Design

System Design

Workflow Design

refers to
Workflow Model

0,*1,1

1,1 0,*

14

Information Analysis

Within this report, our focus is on object models. Therefore, we abstract from the pecularities
one has to deal with during strategic as well as during organisational analysis and design. In-
stead, we assume that organisational design has - among other things - resulted in a set of pre-
liminary business process models. To further refine these models, any activity within a busi-
ness process can be assigned a set of information that it requires or that it produces. The part
of that information which is supposed to reside within the computerized information system to
be designed serves as an initial input for building an analysis object model (object model (1)
in fig. 1). This stage of analysis aims at gaining a deep understanding of the tasks to be per-
formed in the domain of interest. Therefore, it requires intensive communication with domain
experts and prospective users. For this reason, the concepts used within this stage should not
be loaded with details which are only relevant for design or even implementation purposes.
Among other things, this implies not to enforce a high degree of formalisation. Nevertheless,
an analysis object model should allow for a seamless transformation into more detailled and
formalized object models.

Object Design

Object design aims at specifying the objects identified during analysis in more detail and with
more formal rigour.1 This requires additional concepts. The participants in this stage of the life
cycle are expected to be familiar with software engineering. For this reason, the concepts in-
troduced specifically for this stage do not have to be intuitive for every domain expert. Never-
theless, they should directly correspond to concepts used during analyis in order to avoid fric-
tion. Compared to analysis there is more emphasis on the specification of services and addi-
tional constraints.

System Design

System design aims at preparing an object model for implementation. It includes further re-
finements of the object model and the definition of the overall system architecture. The latter
recommends to have concepts available that allow to model existing software as well as base
systems, such as hardware and operating systems.

The following description of MEMO-OML consists of three sections. Section 4 provides an
natural language introduction to language concepts. It starts with concepts intended to be used
within information analysis. Subsequently, additional concepts for object design and system
design will be introduced. Against this background the metamodel (abstract syntax and seman-
tics), as well as the graphical notation (concrete syntax), will be presented in section 5.

4. Language Features

While the differentation into information analysis, object design and system design serves to
illustrate a possible use of language concepts during the various stages of system development,
there is an additional, orthogonal differentiation into three categories which denote the purpose
a concept is to serve.Semanticconcepts serve to describe those properties of an object which
correspond to properties of real world entities or concepts.Organisationconcepts serve to or-
ganize/structure object models in order to foster understanding and maintainability.Manage-

1. Notice that this is different from the use of the term within OMT ([Rum91]).

15

mentconcepts provide information that helps with the management of instantiated object mod-
els, like default values or a history flag for attributes (which, when it is set, indicates that the
changes of the state of an attribute should be recorded). Ressource concepts allow to describe
information system ressources, like hardware, operating systems, existing applications etc.
that may be referenced in an object model.

4.1 Basic Concepts (Information Analysis)

An object model consists ofclasses. An objectis an instance of exactly one class. Notice that
this is different from classless programming languages and from some languages used within
DBMS, such as the ODL suggested by the ODMG ([CaBa97]). At the same time it is more
specific than the UML where an object may be an instance of oneor many classes ([Rat97e]).
For the description of analysis object models MEMO-OML offers a rudimentary concept of a
class. A class has a name that must be unique within the scope of an object model. At this level
of abstraction, the main emphasis is on semantic concepts. There is only one management con-
cept that can be optionally assigned to a class at this stage:Multiplicity serves to express the
minimum and maximum number of instances (cardinalities) of a class. The essential semantic
concept to specify a class within analysis object models areattributes andservices.

4.1.1 Attributes and Services

An attribute represents an object or a set (or an ordered collection) of objects of a specific class
respectively. During analysis, an attribute is assumed to be specified by two concepts:Multi-
plicity andclass. Multiplicity allows to express the minimum and maximum number of in-
stances which together represent a particular attribute. Class serves to describe the class a par-
ticular instance of an attribute is instantiated from. A service is characterized by asignature
which consists of its name and none to many parameters. Each parameter has to be assigned a
name that is unique within a signature. Additional constraints may be defined in order to en-
force certain syntactic conventions, like - for instance - those imposed by Smalltalk or Eiffel
(see 5.8.1). Each service returns zero or one value. We regard parameters and returned values
as objects, i.e. they are specified by classes. The object design phase requires more elaborated
specifications of attributes and services. Therefore both concepts, attribute and service, will be
specified later.

4.1.2 Associations

Additionally, it is possible to define associations between classes. We only allow forbinary
associations. Each class that participates in an association can be assigned a multiplicity - no-
tice that this is different from the multiplicity assigned directly to a class. In case the maximum
cardinality is larger than one, an additional predicate can be assigned (like "ordered", "sorted").
An association can be annotated with a directed designator in order to support an intuitive un-
derstanding of a model. The classes involved in an interaction assocation may be assigned a
context rolethat serves to provide additional information without formal semantics. A special-
ised class inherits all the properties of its superclasses (except those which have been excluded
because of naming conflicts). In addition to mere interaction associations, MEMO-OML of-
fers two special types of associations:aggregationand delegation. Delegation will be de-
scribed later, after introducing a first specification of specialisation.

The idea of composing parts to aggregated entities is an important concept for describing and
analyzing the real world. It can be mapped directly to an object model, since both, parts and

16

aggregates can be represented as objects. For this reason, it makes sense to provide the concept
of aggregation with an object-oriented modelling language. At the same time, we did not suc-
ceed in defining a concept of aggregation which would allow for a clear distinction from inter-
action associations. This is for a good reason: The intuitive semantics of aggregation is based
on the perception and interpretation of real world circumstances. Those are, however, outside
the scope of the formal concepts used within a model. For this reason, the formal concept of
aggregation is characterized by two modest constraints:

#1 An aggregation is adirected association with a clear distinction between part and
aggregate.

#2 Aggregations must not be cyclic.This does not exclude recursive associations. It simply
means that, within an aggregation, an object must not act as a part of itself. Applying this
constraints requires to take into account that aggregations are transitive.

4.2 Specialisation

While specialisation, often illustrated with the designator "is a", seems to be a common and
intuitive concept for describing the world, a thorough analysis reveals that a specification of
specialisation has to deal with complex challenges. These challenges are mainly caused by the
fact that the concept of inheritance as it is provided by most object-oriented programming lan-
guages differs in a subtle way from the common concept of specialisation. Furthermore, within
natural language specialisation is often used in an ambiguous way - which adds to its versatility
but hinders a proper formal reconstruction.

The common sense concept of specialisation implies that any instance of a class is an instance
of its superclass as well. Nevertheless, MEMO-OML uses a concept of specialisation where
an object can only be instance of exactly one class. This restriction is hardly to avoid in order
to allow for a seamless transformation into an implementation model: Object-oriented pro-
gramming languages usually do not allow an object to be an instance of more than one class.
At the same time, it is a restriction that imposes severe problems as will be shown later. At first
sight, the specialisation of a class may be regarded as a new class that inherits all the features
of this class and adds a number of features (which do not contradict the inherited features).
Such a restrictive rule, however, would not allow to represent the common notion of speciali-
sation within an object model to a satisfactory extent: It is common sense to use general prop-
ositions also in cases where exceptions exist: "A bird can fly ...". Therefore, it seems to be a
good idea to allow forredefinitionof inherited features. However, despite its versatility, rede-
fining inherited features is similar to the use of a general proposition which does not hold in
any particular case. This means, in a rigorous sense: It is wrong.

It is not acceptable to provide for arbitrary redefintions of any inherited feature (as it is possible
in some object-oriented programming languages), since that would allow to completely dis-
guise the concept of specialisation: A "specialised" class would not have to have any feature
in common with its superclass. This is the reason, too, why MEMO-OML does not allow to
delete inherited features (or associated objects) from a class. While we agree with Meyer to a
great extent that "even with a careful design some taxonomy exceptions may remain "
([Mey97], p. 843), we do not think that arbitrary "descendant hiding", as Meyer calls it, is nec-
essary. Notice that that does not imply to completely give up the versatility provided by delet-
ing inherited features. By using zero as a minimum cardinality, there is a chance to avoid the
use of an inherited feature (on the instance level). Nevertheless, in order to foster the construc-
tion of "natural", "intuitive" models, it is desirable to allow for certain redefinitions. Therefore

17

we should look for an acceptable compromise: How could the redefinition (or overriding) of
inherited features be restricted in order to specify a satisfactory compromise?

There are two main perspectives to look at the problem of redefining the class of inherited fea-
tures: a programming language perspective and an conceptual modelling perspective. In the
area of programming languages there have been numerous investigations (for instance:
[Car87], [Cas95], [Mey97], [SzOm93]) - mainly related to type checking problems. While
conceptual modelling cannot completely neglect the pecularities of implementation languages,
it is also directed towards the representation of "natural", common sense concepts. With a si-
milar intention in mind, researchers in Artificial Intelligence, especially in the area of knowl-
edge representation, have tried to model common human "communication conventions"
([MCa86], p. 91). Efforts to reconstruct human thinking with machines resulted in a number
of approaches which allow exceptions to be handled in formal systems without the disastrous
consequences contradictions usually produce. They are related to terms like "non monotonic
reasoning", "truth maintenance systems", or "circumscription" (see [Doy79], [MCa86],
[MDD80]). In addition to allowing more intuitive models, those concepts support the conven-
ient maintenance of a knowledge base (although this way of maintenance does not have to re-
sult in satisfactory systems).

In order to get an idea of useful principles to guide overriding, we will consider two subjects
of redefinition: classes and multiplicities. The examples focus on associations. Later, the deci-
sion that are illustrated through these examples will be generalized for attributes and services
as well.

Classes

According to our experience, reconstructing common concepts often results in the need for re-
defining classes within inherited associations. Fig. 6 gives an intuitive example: A bicycle is
composed of wheels. The association holds for all subclasses, except forRacingBike andRac-
ingWheel: A racing bike must have racing wheels while a racing wheel can be mounted on a
racing bike only. Fig. 6 reveals an additional problem: The graphical notation is misleading. It
is not evident, whether the association betweenBicycle andRacingWheel denotes an addition-
al association or whether it redefines the association betweenBicycle andWheel.

 .

While the notation is not our primary concern at this stage of our investigation, it is obvious
that there is need to enhance the graphical notation. Fig. 7 shows a possible enhancement. No-
tice that there would be still need for yet another notation to render a partial redefinition of an

Bicycle

RacingBike

Wheel
composed of

Fig. 6: Specializing a class within an association

2,20,1

RacingWheelMountainBike

18

inherited association. For instance: While a racing bike requires racing bike wheels, it may be
possible to mount racing bike wheels on any other bicycle (this case will be covered by the
final notation, see 5.8.2).

The redefinition shown in fig. 6 and 7 is somethimes called "covariant" ([Cast95], [Mey97],
pp. 621). It denotes a rule of specialisation where features (or associated objects) of specialised
classes may be redefined as specialisations (aRacingWheel is a specialisation ofWheel).
While the covariance rule seems to correspond to the common sense use of specialisation, it
implies a serious problem. From a logical point of view, the covariance rule leads to contra-
dictions in a model’s statements: "A racing bike is a bicycle" AND "A bicycle uses wheels"
implies that a racing bike uses wheels which includes wheels that are not racing bike wheels.
Hence, redefining the statement "A racing bike is composed of wheels" by "A racing bike is
composed of racing bike wheels" results in a contradiction - with a devastating effect on a
model’s integrity. From a software engineering point of view (which is stressed, for instance,
by [Mey97]), applying the covariance rule can result in type errors at run time. For example:
An object of the classRacingBike receives the messageaddWheel with an instance of the class
Wheel as an argument. Being kind ofBicycle, the object should act as any instance ofBicycle.
Hence, the serviceaddWheel should except a parameter of the classWheel.

There is an alternative rule to redefine features of a class that avoids the problems of covariant
redefinitions: The contravariance rule ([Mey97], pp. 626) prescribes that classes of inherited
features may be overriden by one of their superclasses (generalisation instead of specialisa-
tion). Therefore, contravariant redefinitions seem to be preferable - at least from a software en-
gineering point of view. However, despite its formal advantages, the contravariance rule seems
of little use - you can hardly find an example that could be represented by using contravariant
redefinition. Therefore, MEMO-OML allows for covariant redefinitions of inherited features
only. Contravariant redefinitions would be easy to handle, but they do not seem to make any
sense. Despite his preference for formal rigour, Meyer recommends the covariance rule as well
- sacrificing "mathematical elegance" for "realistic and useful" designs:

"An argument often encountered in the programming literature is that one should strive for
techniques that have simple mathematical models. Mathematical elegance, however, is only
one of several design criteria; we should not forget to make our designs realistic and useful too.
In computing science as in other disciplines, it is after all much easier to devise dramatically
simple theories if we neglect to make them agree with reality." ([Mey97], p. 626)

Bicycle Wheel
composed of

Fig. 7: Specializing a class within an association with corresponding notation

2,20,1

MountainBike redefines "Bicycle
composed of Wheel"

RacingBike RacingWheel

19

On a conceptual level, contradictions that can be produced by applying the covariance rule are
hardly acceptable. In order to allow for exceptions without producing logical contradictions,
classes of associated objects are regarded as true (in a rigorous sense) only if they do not con-
tradict any redefined specialisation. Otherwise, they are valid for a restricted set of classes on-
ly. In other words: They are of limited generalisation. MEMO-OML also allows to define a
class within an association as non-specialisable. In this case, it must not be redefined on a sub-
class level. Such a convention is similar to formal systems that have been introduced for "non
monotonic reasoning". There, a proposition can be assigned the meta predicate "valid, if con-
sistent" [MDD80]).

While MEMO-OML allows for specializing classes within an association, we do not encour-
age the use of this concept. This is at least for two reasons. First, it can be misused to "repair"
generalisation hierarchies which were not carefully designed - thereby it would contribute to
inappropriate abstractions. Second, it has to be taken into account that implementing such a
concept may result in additional problems - especially with programming languages that do
not feature dynamic typing. The notation used within the examples will be refined. However,
it is hardly possible to provide a notation that allows to completely cover the entire semantic
variety to occur within the specialisation of associations. Therefore the use of additional con-
straints may be required in some cases.

Multiplicity

Redefining multiplicities within an inherited association is a delicate task. This is partially due
to the fact that inheritance as it is featured by most object-oriented programming languages
(and as it is defined within MEMO-OML as well) has a meaning different from the common
sense semantics of specialisation. At first sight, the multiplicity in example in fig. 8 seems to
perfectly reflect the common understanding of roles people can hold: A person may act in none
to many roles. A role can be regarded as an abstract generalisation over concrete roles such as
student, professor, etc. By default, the multiplicity of an inherited association remains un-
changed. This implies that the multiplicity assigned toRole (0,*) also applies for the special-
ised classes, such asStudent or Professor. Hence, a person could be both a student and a pro-
fessor many times.

Consider now the following case: The model should express that a person can hold any role of

Person Role
0, *1,1

acts as

Fig. 8: By default, the multiplicity assigned to classes within an association is inherited
to be used with subclasses, too. Hence, in this example a person could act many
times both as a professor and as a student.

Interaction

Generalisation

Student

Professor

20

a particular type no more than once (in other words: it should not be associated with more than
one instance of a class specialised fromRole). Assigning a corresponding multiplicity - 0,1 -
to Role seems to satisfy this constraint: All specialised classes would inherited it, and this is
exactly what is required. However, at the same time this multiplicity would imply that a person
cannot hold more than one role (of any type) in total (fig. 9). In order to apply such an assign-
ment in a consistent way, it is necessary to introduce an implict constraint. The sum of the max-
imum cardinalities inherited by the subclasses ofRole would be larger than 1 - contradicting
the maximum cardinality assigned toRole. Therefore, we use the implicit constraint that max-
imum cardinalities of specialised classes within an association have to be interpreted in a con-
text sensitive way, hence with respect to the actual cardinalities of other relevant subclasses.
Notice that the implementation of this implicit constraint can result in a remarkable effort.

Replacing the multiplicity in fig. 9 with 1,1 would result in a model that is not consistent any-
more (see fig. 10): Inheriting this multiplicity toStudent andPerson would result in a mini-
mum cardinality of 2 forRole. Therefore it is not allowed to use the multiplicity 1,1 for a class
within an association that is subject of further specialisation - at least not without applying ad-
ditional measures. To be more general, these considerations imply the following constraint:
The sum of the minimum cardinalities inherited to the subclasses of a class that participates in
an association must not exceed the maximum cardinality of the class itself.

Person Role
0, 11,1

acts as

Fig. 9: The multiplicity assigned to Role - 0,1 - also applies for Student and Professor.
Since no more than one role can be assigned at one point in time, a person can-
not act as a student or a professor simultaneously.

Interaction

Generalisation

Student

Professor

21

Against the background of the interpretations introduced so far, it becomes evident that there
is no straightforward way to express the case that a person may hold many roles at a time, but
only one of a particular type. For this purpose we would need additional concepts. One option
would be to specify a constraint that expresses the semantics required for a particular case. In
principle, MEMO-OML allows for such an approach. However, since cases like the last one
occur frequently, we decided to offer specialised concepts - together with a corresponding no-
tation - to express various kind of specialising associations.

In order to avoid ambiguity (and contradictions which would compromise a model’s integrity),
the affected multiplicities have to be specified asredefined. The redefinition of multiplicities
is restricted to certain modifications. The multiplicity of a subclass may only be specified by
a range which is included in the range of the superclass. This rule is due to the common sense
interpretation of specialisation: An instance of a subclass is an instance of a superclass at the
same time. Although this is not the case for the concept of specialisation used within MEMO-
OML, the rule is enforced in order to foster an intuitive understanding of models. In addition
to that, it is also required that the constraint concerning the sum of the minimum cardinalities
applies in this case, too: The sum of both, inherited and redefined cardinalities must not exceed
the maximum cardinality assigned to a superclass - this does not only include the direct sub-
classes but all subclasses (a more precise specification of this constraint will be provided later
with the metamodel).

Person Role
1, 11,1

acts as

Fig. 10: Using the multiplicity 1,1 for a class that has subclasses in the way shown in this
example is a contradiction in itself. For this reason it is not permitted - regardless
of the domain.

Interaction

Generalisation

Student

Professor

22

Attributes and Services

Associated objects are accessed via services. Therefore, the rules defined for redefining inher-
ited associations have to apply for services as well. While there is a clear difference between
attributes and associated objects on a conceptual level, this difference depends on the context
and will usually vanish on the implementation level where both, associated objects and at-
tributes, are represented as instance variables. Because of this strong similarity, we decided to
use the same rules for redefining the class and multiplicity of inherited attributes as we have
introduced for associated objects. In any case, it is required to characterize an overridden at-
tribute or service as redefined. Fig. 12 illustrates the rules to be applied for redefining attributes
and services.

Person Role
0, *

0, 1

1,1

acts as

Fig. 11: Specialisation of multiplicities within an association are permitted. The affected
multiplicities have to be marked as as specialised (this is a preliminary notation).

Interaction

Generalisation

Student

Professor

23

Subtyping

Sometimes it may be necessary to ensure that an instance of a class can be replaced by any
instance of one of its subclasses. In this case, it is common to speak ofsubtypingas a special
form of inheritance. Subtyping implies that the covariant redefinition of features is not appli-
cable. Since the contravariance rule does not make any sense, we speak of subtyping only if
none of the inherited features (or associations) has been redefined. Hence, subtyping is an im-
plicit concept within MEMO-OML. The only way to express that a class should by a subtype
of a superclass would be to explicitly forbid redefinition for all of the superclasses’ features
(and associations). This can be done using a corresponding attribute for any feature. This im-
plies that a class cannot have a subclass and a subtype at the same time.

Delegation

In many application domains there are certain aspects that cannot be modelled in an adequate
way by using generalisation or common associations (like interaction or aggregation). In those
casesdelegation often proves to fill this conceptual gap.

Attribute

Feature Specified by Redefined by

Class C C’

Multiplicity min, max min’, max’

Feature Specified by Redefined by

Class C C’

Multiplicity min, max min’, max’

Class C C’

Multiplicity min, max min’, max’

Service

ReturnedObject

Parameter

Rule:

C’ is subclass of C ("covariance")
min’ >= min
max’ <= max
min’ <= max’

Fig. 12: Redefinition of Attributes and Services

24

From an implementation point of view delegation is essentially based on transparent message
dispatch. We define delegation as a special association with the following general characteris-
tics:

1. Delegation is abinary association with one object (the "role" or "role object") that provi-
des transparent access to the state and behaviour ofanother(not the same) object (the
"role filler" or "role filler object").

2. The role object dispatches every message it does not understand to its role filler object.
Thereby, it does not only dynamically "inherit" a role filler object’s interface (as it would
be with inheritance, too) but also represents the particular role filler’s properties. In other
words: It allows for transparent access to the role filler’s servicesandstate. In case a role
filler object includes a service that is already included in a role object’s native interface
(defined in its class or one of its superclasses), the role object will not dispatch the mes-
sage to the role filler object. Instead the corresponding method of the role object is execu-
ted.

3. Inheritance and delegation: Both, the responsibilities of a role filler class and a role class
are by default inherited to their respective subclasses.

4. A role filler may in general have none or many roles. For a particular delegation, the mul-
tiplicity of roles can be specified within this range. A role filler may have more than one

conceptual level
delegates

represents

Fig. 13: Meaning of Delegation on the Conceptual Level

Programmer
Person

Fig. 14 Sequence Diagram to illustrate the Dynamics of Delegation

:Object :Student

lastName

semester

asking for the
student’s name

asking for the

:Person

lastName

student’s semester

(transparent
message dispatch)

role role filler

25

roles of the same class. For instance: An object of the classPerson may be associated
with more than one instance of the classProgrammer at the same time - a programmer
with Smalltalk experience and another one with C++ experience (that does not mean,
however, that we would recommend to always use two instances for modeling this situa-
tion).

Different from the less restrictive use of the concept in some delegation based programming
languages, we propose a number of constraints:

#1 Only classes that are kind of a special role class or a special role filler class can be used
to serve as roles or role fillers within a delegation association.This is for two reasons:
Not any object is conceptually suited to serve as a role or a role filler respectively. Moreo-
ver, the special semantics of both classes will often require certain extensions on the
implementation level.

#2 The number of role filler classes to be used for a particular role class is restricted to one.
While there are real world situations where it seems to be appropriate to have a role class
associated with more than one role filler classes (see example 2 below), such a "multiple
delegation" would substantially decrease the chances to check a model’s integrity. The
concept of delegation we have decided for does not allow for multiple delegation, since
we regard integrity a more valuable asset than flexibility in this case. That does not neces-
sarily exclude to have a role associated with instances of different role filler classes - pro-
vided they are all subclasses of one common superclass. It may be helpful to define an
abstract superclass for this purpose, thereby providing a minimum common protocol for
all possible role fillers (see example 2 below).

#3 At a point in time, a role object must not be associated with more than one role filler
object.While associating a role object with more than one role filler object of the same
class (#2) would not add confusion with respect to the interface, it would certainly jeopar-
dize the whole idea of delegation: A role represents exactly one role filler and allows
transparent access to that role filler’s state. Notice that this does not exclude a role object
to change its role filler object over time.

#4 Multi-level delegation is possible. However,cyclic associations are not permitted.Since
the number of a role class’ corresponding role filler classes is restricted to one, it seems
appropriate to allow a role object to also act as a role filler object (which one might call
multi-level delegation): It may increase a model’s complexity but it is no serious threat to
its integrity. For this reason, multi-level delegation is not excluded by our definition of
delegation. By no means may a role object act as a role filler of itself: In most cases, one
would regard an object that is a role of itself as a bizarre abstraction on a conceptual level.
On an implementation level, a cyclic association of this kind would impose the threat of
non-terminating message dispatches.

It is up to the experienced analyst who should always be in charge of modelling to guide the
domain experts with identifying possible delegation associations. For instance: Whenever a
specialisation could be replaced by an association labeled "represented by" or "delegates", it is
usually a good idea to choose delegation instead of generalisation/specialisation (for a detailed
description of such guidelines see [FrHa97]).

26

4.3 Additional Concepts (Object Design)

Beside the concepts that serve to refine classes, there is one additional general concept: A class
may be an instance of exactly onemetaclass.To allow for a more detailed specification of a
class within object design, MEMO-OML offers additional features to specify attributes and
services as well as two additionalsemantic class features: guards and triggers.Associations,
attributes, and services can be defined as "deferred" which means that they have to be specified
within a subclass. An association is regarded to be deferred if at least one of the two association
links it belongs to is deferred. Only abstract classes may have deferred features. Referring to
Meyer, we call an abstract class that has a deferred feature adeferred class([Mey97], p. 486).
A feature that is not deferred is called "effective" ([Mey97], p. 486). Each semantic class fea-
ture may have any number of instances. Each instance needs to have a unique name within the
scope of the class it is assigned to.

4.3.1 Attributes/Associations

For its use during design, an attribute can be specified further by a number of additional fea-
tures. In case the maximum cardinality is larger than one, an additional predicate can be as-
signed (like "ordered", "sorted"). Notice that there are only two semantic differences between
an attribute and an associated object. First, an object that serves as an attribute must not be of
the same class as the class of the encapsulating object or any of its subclasses. This constraint
is thought to prevent problems that could occur with non terminating recursive initialisations.
Second, the association between an object and its attribute is not symmetric. In other words:
An attribute must not have its object as an attribute. Attributes and associated objects are dif-
ferentiated to express different intentions of the language user: While an object (or class re-
spectively) represents an entity which has an identity of its own within an object model, an at-
tribute represents an entity that has no such identity outside the scope of the object it is encap-
sulated in. The following features can be assigned to both attributes and associated objects.Ac-
cessTypeserves to specify the scopes in which particular modes of access may occur. Ac-
cessType is specified by a set of access modes and corresponding privileges. Access mode is
either #read or #write, or - only in the case of a maximum cardinality larger than one - #remove
or #add. Each access mode has aPrivilegeassigned which is either #private, #public or #pro-
tected. #private indicates that the attribute is only to be accessed from within the encapsulating
object. If only authorized objects are allowed to access the attribute, this is indicated by #pro-
tected. Finally, #public expresses that the attribute can be accessed by any object. Notice, that
this specification deviates from the use of access privileges in C++. In the case of an external
access, an appropriate service is required to allow for the access.

Programmer

level
•

experience
level

•

delegates

message(i.e.
"lastname ")

Fig. 15: Delegation from an implementation point of view.

Person

lastname
•

lastname
firstname

•

27

In addition to its semantic features, an attribute has a number of management features. Default-
Valueis specified by an instance of the attribute’s class and serves to indicate the state an at-
tribute should have by default.History is specified by a boolean value. It indicates whether or
not the changes of an attribute’s state are to be recorded (for instance: when the name of a cus-
tomer changes, you may want to record the previous name). Any of an attribute’s or an asso-
ciation link’s management features (History, DefaultValue, AccessType) can be redefined
within a subclass. This is also the case for an exception assigned to a service.

4.3.2 Services

Access rights define the scope in which the service may be used (#public, #protected, #pri-
vate). Their meaning corresponds to that defined for attributes (see above). In case the imple-
mentation language does not support a particular access right, it may be reasonable to use a
slightly deviant interpretation.

We differentiate five categories of services:regular services,default accessservices,propa-
gatedservices,deferredservices andredefinedservices. Default access services are services
which provide default access (read, write, insert, delete) to an object’s attributes (AttriAc-
cessService) or its associated objects (AssocAccessService). Regular services can be specified
by the attributes (of the same class) or services (of any class) they use. Propagated services
mainly serve to provide an abstraction: They are propagated from the interface of an attribute
of the particular class. For instance: A class may have an attribute "dateOfBirth" which pro-
vides a service "yearsOfAge". A propagated service allows to make that service available di-
rectly within the interface of the corresponding class (like "Person") without loosing track of
the reference. A deferred service can be assigned to an abstract class only. It must not be im-
plemented within the class it is assigned to. Any service may be assigned apreconditionand
apostconditionwhich are expressions to be specified in a language still to be defined. Precon-
ditions and postconditions may refer to any object or service, as well as to attributes of the
same object.Control allows to specify how a service fulfills its task. In the current version,
there are not special language concepts to support this specification. It could be done with a
formal specification language, pseudo-code or a semi-formal graphical language (like state
charts). It can only be assigned to regular services, since the purpose of other service types is
predefined already. The responsibility of a class is implicitly defined by the pre- and postcon-
ditions of its services. A redefined service redefines a service inherited from a superclass. The
constraints that apply to the specialisation of services will be explained later (see 5.1).

In general, the signature of aredefined service, the parameter(s) as well as the class of the re-
turned object may be modified: The parameter name(s) may be changed, their class(es) as well
as the class of the returned object may be redefined according to the covariance rule. Signa-
tures within redefined default access services must not be modified deliberately: Both param-
eters and returned object are determined by the attribute/associated object that is accessed. In
case the multiplicity of an associated object is redefined as a multiplicity with a maximum car-
dinality smaller than two, access services that depend on the existence of more than one asso-
ciated objects do not make sense any more. However, since it is not possible to remove an in-
herited service, the only way to handle this case is to make the corresponding services (like
adding an associated object) ineffective in an appropriate way.

Preconditions, postconditions within inherited services are a delicate subject. As long as there
is no formal language to specify preconditions and postconditions, the following informal rule
applies for corresponding redefinitions: Any redefinition of inherited preconditions and post-

28

conditions is allowed as long as it does not compromise the rules defined for redefining param-
eters and returned objects.

At first sight, it may appear that default access services are of no relevance unless you want to
generate code. However, in order to add more specific pre- or postconditions or for the speci-
fication of guards or triggers, it may be necessary to refer to those services. Furthermore, it has
to be taken into account that additional models, like workflow models, may use particular de-
fault access services.

In addition to its semantic features, each service can be characterized by a management fea-
ture: Exception serves to identify exceptions which may occur during execution.

4.3.3 Guards and Triggers

A trigger serves to express a rule of action in the responsibility of the objects of its class. The
rule consists of an event and a corresponding action which is performed by a particular service
of that class. An event is specified by a boolean expression. The event occurs when the expres-
sion evaluates to true. It can be caused by a state change (in any set of objects) or by the
progress of time (which may be regarded as a state change as well - for instance: whenever an
employee turns 50, his salary has to be increased by 3%). It should not be used to express a
rule that could also be specified by a precondition or a postcondition. A trigger may refer to
any object or service, as well as to attributes of the same object.

A guard is an invariant (see [Mey97], pp. 364) which goes beyond the scope of a service or an
attribute. It serves to prevent inconsistent states. For example: "Make sure that the retail price
of a product cannot be lower than its wholesale price." As with preconditions, postconditions
and triggers, guards are specified in a language that has not been defined/selected yet. They
may refer to any object or service, as well as to attributes of the same object. A formal speci-
fication of these concepts is required in order to avoid any contradictions between them (and
between them and other concepts within an object model). A guard is more specific than a con-
straint in the sense that it is a feature of one class only, i.e. as soon as this class is removed from
the object model, the guard does not make sense any longer. Both guards and triggers of a class
may be assigned a name which should be unique within the class.

Inherited guards and triggers may be redefined (see fig. 25). This is a preliminary regulation
which may require additional constraints in the future. On the implementation level, guard and
triggers are usually reconstructed as services. In case a redefined guard implies that an effected
service gets modified or becomes obsolete, those changes have to be applied as soon as the
guard is in place - otherwise the integrity of the corresponding class would be harmed.

4.3.4 Constraints

A constraint can be assigned to any modelling element. It should, however, be used only if oth-
er, more specific concepts (like guards, pre- or postconditions) are not applicable or less ap-
propriate. Examples: "Within the object model there must be a class that provides a service
xy."; "The generalisation hierarchy must not be deeper than 8 levels." A constraint must not
contradict any other concept within an object model.

4.3.5 Subtyping (Refinements), Interfaces, Metaclass

Sometimes the terminterfaceis used to allow for an additional abstraction. If you want to
make sure that certain classes within different object models offer a specific set of services,

29

you may want to specify these sets without regard to a particular class. Think, for instance, of
basic services to be provided by a text editor, like copy, cut and paste of text. Another example
would be the elements of a standardized software architecture - like the interfaces that have to
be provided by parts implemented within an OpenDoc environment ([Ope94]). Any interface
that has to be satisfied within the scope of an object model could be modelled as an abstract
class. Since MEMO-OML allows for multiple inheritance, the class that should provide a par-
ticular interface would be defined as subclasses of the corresponding abstract class. In case you
have to map an existing interface to one requested by a specification, you would have to define
a class that provides the requested interface together with the dispatching to the existing inter-
face. In other words: MEMO-OML does not explicitly offer the concept of an interface. It can,
however, be represented by other existing concepts.

Our interpretation of "subtyping" and "interface" is different from the concepts "type" and "in-
terface" proposed by the UML. Notice, however, that the use of these concepts is not consistent
within the official documents about the UML - only part of which is due to changes that oc-
cured between different versions of the language. Version 1.0 includes the following state-
ment:

"Class is a subtype of Type, and therefore instances of Class have the same property as instanc-
es of Type. The fundamental difference being that Type instances specify interfaces, whereas
Class instances specify the realization of these interfaces." ([Rat97a], p. 57)

Later, in version 1.1, both concepts are defined in a different way:

"An interface is the use of a type to describe the externally-visible behavior of a class, compo-
nent, or other entity (including summarization units such as packages)" but also: "An interface
is a type and may also be shown using the full rectangle symbol with compartments" ([Rat97g,
p. 25])

"A Type characterizes a changeable role that an object may adopt and later abandon. An
object may have multiple Types (which may change dynamically) but only one Implementa-
tionClass (which is fixed)" [Rat97f], p. 35)

We do not think it is appropriate to introduce types within object models because they are not
required (for a similar point of view see [Mey97], p. 24). Instead they may cause confusion. In
any case we do not agree with the authors of UML to define a type without regard to its seman-
tics. We rather speak of classes - some of which may be specified by subtyping them from oth-
er classes. As already explained abobe, MEMO-OML allows to specify a subtyping relation in
an indirect way - by defining all the inherited attributes, services and associations of a class as
not specialisable. It is the purpose of this rule to ensure that an instance of a subtyped class can
replace any instance of its superclass (replacement rule). Different from the general concept of
inheritance, this implies that inherited pre- and postconditions must not be changed either.
However, in order to allow some sort of flexibilty without violating the replacement rule, it is
possible to redefine the algorithm (control) of an inherited service (and, at a later stage, to in-
troduce a corresponding implementation).

While it is arguable whether it makes sense to regard classes as objects within conceptual mod-
elling, this idea can be useful to specify information which is required for system design. For
this reason MEMO-OML offers metaclass as an optional concept. A metaclass is a class with
exactly one instance which has to be a class. A class in turn must not have more than one met-
aclass.

30

4.3.6 Organisation of Object Models

Object models can become rather complex. This recommends organisation concepts which al-
low to reduce complexity. At present time, MEMO-OML offers only one concept which al-
lows to group classes of an object model. Each class can be assigned zero or onecategory. A
service can be assigned to oneprotocolwhich needs to have a unique name within one class.
A protocol may contain zero to many services. An attribute group serves the same purpose for
attributes. It must have a unique name within a class, and it may contain zero to many at-
tributes. Although they do not have any semantic impact, inherited protocols must not be
changed in order to avoid confusion. Constraints that effect a certain class may be redefined
by constraints introduced for subclasses. This preliminary rule is due to the fact that MEMO-
OML does not include a formal constraint specification language yet.

In addition to those grouping concepts, MEMO-OML includes a organisation concept that
serves a similar purpose. Aclusteris a collection of classes that provides an identifiable func-
tion within a system. Different from categories a cluster may contain other clusters. Further-
more, a class may be part of more than one cluster. This notion of a cluster is inspired by a
modelling method called "Business Object Notation" [WaNe95]). Associations between clus-
ters can be derived from the associations between their classes. Clusters allow to split a com-
plex system in a set of interacting units which may be decomposed further. The graphical rep-
resentation of the clusters that constitute a system can be regarded as a system architecture.
Notice that this does not imply any restrictions on the level of abstraction you may want to
choose for a particular architecture.

In recent years, object-oriented frameworks have gained remarkable attention for their poten-
tial to facilitate large scale reuse. According to Cotter and Potel "A framework embodies a ge-
neric design, comprised of a set of cooperating classes, which can be adapted to a variety of
specific problems within a given domain" ([CoPo95], p. xx). In the most simple but least flex-
ible case, a framework does not allow for individual modifications. Instead its functionality
can be accessed through the interfaces of a set of classes which are part of the framework. Dif-
ferent from this "use as is" strategy, within the "complete" strategy a framework includes parts
- like abstract classes - which require further specifications, typically through specialisation.
Finally, there are frameworks which allow to redesign/override certain parts ("customize",
[CoPo95]). Those parts of a framework which are visible for modification are sometimes
called "hot spots" where the rest of the framework consists of "frozen spots" ([LaNa95]). On
the level of abstraction appropriate for object modelling, we regard a framework as a collection
of associated classes with a number of additional features:

• any class within a framework has to be implemented

• any class within a framework can be visible for reuse or not

• visible classes may be specialised or not

• visible classes may be modified or not

• visible classes may be replaced or not

Notice that the modification of a framework should not hurt any integrity constraint imposed
by the framework itself. Since this aspect is out of scope, we do not regard it any further.

Similar to frameworks, design patterns are often regarded as a powerful concept to foster re-
use. In its original sense, a design pattern provides a structured description of "good" design

31

for a class of problems ([GaHe95]). Hence, design patterns can be regarded as a contribution
to a study of (object-oriented) modelling. From a slightly different point of view, design pat-
terns can be regarded as a technique to describe a generic design, i.e. a design that is suitable
for a number of particular problems. In this case, emphasis is on documentation. For this rea-
son, design patterns have been recommended for an illustrative documentation of frameworks
([Joh92]). There is no unique definition of a design pattern’s structure. Probably the most com-
mon structure is the one suggested by Gamma et al. ([GaHe95]).

• Pattern Name

• Also Known As

• Purpose

• Motivation

• Applicability

• Structure

• Participants

• Dynamics

• Consequences

• Implementation

• Sample Code

• Known Uses

• Related Patterns

The concept of design pattern provided by MEMO is based on this structure. Design patterns
can be used to document the design of generic clusters or frameworks.

4.4 Implementation-Oriented Refinements (System Design)

In order to allow for a seamless transformation of an object model into an implementation, it
is necessary to add information that is required on the code level. Furthermore, it can be a good
idea to enhance the model with specifications that target implementation relevant issues like
performance and persistence.

4.4.1 Stored References

In most implementation level languages, associations are implemented through variables that
store references to associated objects. Within a binary association, at least one of the associated
objects needs to store such a direct reference. If both associated objects store a reference, we
speak of a bidirectional associaton. Otherwise we speak of a unidirectional association. In or-
der to prepare a design model for implementation, MEMO-OML allows to assign an attribute
to express whether or not the objects of the corresponding class should store a reference to the
object(s) they are linked to through a particular association (see fig. 35).

4.4.2 Persistence

Many applications require persistent objects. However, usually not all objects described in an
object model have to be made persistent. For this reason, it is possible for any class in a MEMO

32

object model to specify whether the lifetime of their objects should exceed the lifetime of an
application instance. Considering the performance of corporate information systems, the time
to access a piece of information can be of crucial importance.

4.4.3 User Interface Concepts

The user interface of a system to be developed is often regarded not to be subject of conceptual
modelling, since a conceptual model should focus on features which are essential to the rele-
vant domain. Nevertheless it can be helpful to include information that is relevant for the im-
plementation of a user interface. This is for various reasons:

• Productivity: The design and implementation of the user interface consumes a considerable
amount of the overall system development time. Enhancing an object model with informa-
tion concerning the user interface may contribute to faster development cycles by allowing
for reuse and code generation.

• Quality: The user interface can be a complex part of the entire system. An abstract descrip-
tion improves the chances for a well designed and consistent user interface.

Notice, however, that adding specific information to an object model is hardly efficient for a
complete specification of a user interface: The interaction with the classes of a system may
vary with the context. An object model, however, does not allow to express certain contexts of
interaction with a system. Those contexts can be taken into account within other perspectives,
like process or workflow models.

In order to prepare for a rudimentary model of a user interface, it can be helpful to assign a
default user interface to every class in an object model. However, not every class will require
an explicit assignment. Often, a user interface can be constructed from the user interfaces pre-
viously assigned to (or constructed for) classes of attributes, associated objects, parameters and
returned objects. Within an object-oriented information system, the functionality of a user in-
terface will usually be specified by an object model (or more likely: a framework of imple-
mented classes). In other words: User interface concepts are rather an application of an object-
oriented modelling language than part of it. Therefore, the preliminary classes we introduce
for describing aspects of a user interface will be specified later as an object model using
MEMO-OML (see 6). We do need, however, a few enhancements of MEMO-OML in order
to allow for UI-specific enhancements of an object model (see fig. 36).

5. The Metamodel

Designing a metamodel for a language can easily become a frustrating endeavour. Often, there
will be various options to represent a particular concept. Different from the design of a real
world domain, there is usually no chance to evaluate those options against common percepti-
ons of reality. Hence, the design of a language metamodel will always include decisions that
are not only based on rational considerations but that also reflect subjective taste. It seems to
be impossible to completely overcome this problem. There is only one way to cope with it: A
metamodel should be explained in a way that it is possible to identify relevant desicisions and
the assumptions/preferences they are based on. While this is the intention of the following sec-
tion, we will not explain every concept of the metamodel since some concepts should be ex-
plained well enough by the metamodel itself (others have already been explained in the pre-
vious section).

33

Semanticconcepts serve to describe those properties of an object which correspond to proper-
ties of real world entities or concepts. Within the metamodelsemanticconcepts are rendered
in black.Organisationconcepts are rendered ingreen, while managementconcepts are ren-
dered inblue. Finally, ressource concepts are rendered inred colour.

5.1 Basic Concepts

All concepts within the Metamodel are specialised fromObject. This makes it easier to add
general modifications that apply to all concepts of the metamodel.ModelElement is an abstrac-
tion for all elements of an object model that are rendered as graphical symbols (or as part of
those).Comment, Constraint andExpression are not specialised fromModelElement. This is
for a simple reason: Constraints and expressions can be applied to any element of a model, ex-
cept for constraints, expressions and comments. Notice that comments can be applied to any
element, including other comments as well. Instances ofExpression are intended to hold ex-
pressions of a (semi-) formal specification language that has yet to be defined.NamedObject
provides a generalisation over all concepts that have a mandatory name which serves as an
identifier within a particular context. Different from that,LabeledObject is a generalisation
over those concepts that may have an optional label which serves only to improve the reada-
bility of a model. Tt present time, the metamodel contains one specialisation ofLabeledObject,
AssociationLink. Nevertheless, this abstraction was chosen in order to support further enhance-
ments of the metamodel. Like associations, class features have to be specified in more detail.
The generalisation hierarchy in fig. 20 only shows the highest abstractions of any class feature,
BasicAttribute, BasicService, BasicGuard andBasicTrigger. Instance serves to model instanc-
es ofClass. While one usually can do without instances in an object model, they are sometimes
required, for instance to define default values. Classes are differentiated into concrete and ab-
stract classes withGenericClass as a common generalisation.

Notice that those concepts within the metamodel that are not explicitly specialised from any
other concept are assumed to be specialised fromObject.

34

While an object model contains instances of any modelling concept (except forObjectModel
itself), it is sufficient to model it as composed of classes only. While comments and constraints
can be related directly to an object model, any other modelling element is either part of a class
or is associated with it.OrderSpec serves to express an order of objects. A particular order can
be defined by picking one of four predefined symbols:#timeUp, #timeDown, #sortedUp, #sorted-
Down. This is a preliminary solution only. In order to ensure the integrity of anOrderSpec, it
would be necessary to check whether a selected order can be applied to the corresponding ob-
jects. An instance ofOrderSpec is assigned toMultiplicity and may be redefined within inher-
ited associations or attributes. This may result in the necessity to redefine corresponding access
services.

Fig. 16: MEMO-OML Metamodel: Generalization Hierarchy (to be extended)

Object

Named
Object

Class
Feature

Multiplicity

Class

Exception

Labeled
Object

Comment

Model
Element

Generic
Class Abstract

Class

ObjectModel

Constraint Association
Link

Expression

Service
Spec

Instance

ContextRole

Basic
Attribute

Basic
Service

Basic
Trigger

Basic
Guard

Specialisability

Cardinality

Metaclass

35

Fig. 17: Basic Concepts (1)

ObjectModel
composed of

1,1 1,*

The specification of a constraint
must must not contradict (may,
however, override) existing
concepts. It should be used
only if no more specific concept
are available.

The identification has to be
unique within an object model.

specification

0,1

StringA
1,1

ExpressionA

Constraint identification
The specification of a constraint must be
represented in a formal language still to
be defined. At this point, we regard a valid
expression in this language to be an in-
stance of Expression.

While it is not required, it is recommended
to use positive numbers as identifiers.

Expression
Model

Element
refers to

0,* 0,*

C 02

C 02

Labeled
Object

StringA
label

The label of an instance
of LabeledObject does
not have to be unique
within any scope.

0,1

The default value of both
attributes, class and multi-
plicity, is "true" indicating
that class and multiplicity
of the corresponding ob-
ject may be redefined.

Generic
Class

Specialisability BooleanA
multiplicity

BooleanA
class

The value of the class attribute
has to be the same as the value
of the class attribute of the asso-
ciated AssociationLink.

Multiplicity may only be true if
maxCard - minCard > 0.0,1

C 03
C 03

C 04

0,1C 04

Cardinality

value

BooleanA
1,1

IntegerA

infinite
C 01

0,1 The attributes infinite and value
must not be instantiated simul-
taneously.

value >= 0

C 01

36

Multiplicity

String

Instance

Fig. 18: Basic Concepts (2)

Generic
Class

features

0, *

specialisation of

0, * 0, *

Named
Object A

name

1,1

A
Class

Feature

number of
instances

0,1
AClass

There may be identical
classes in different ob-
ject models. However,
we only consider the
identity of a class within
one object model.

Multiplicity

IntegerAminCard

CardinalityA
maxCard

minCard >= 0

minCard <= maxCard

OrderSpec may be instantiated only if
maxCard > 1. Initialising it with #sorte-
dUp or #sortedDown requires a sorting
rule to be defined for the ModelEle-
ment Multiplicity is assigned to.

OrderSpec
ordered by

1,1

1,1

0,1

Specialisations must
not be cyclic.

A name has to be unique
within its scope.

OrderSpec Symbol

An instance of Symbol has to be
in (#timeUp, #timeDown, #sorte-
dUp, #sortedDown).A

1,1

description

0,1

StringA
0,1

StringA

Comment identification

A comment is described in natural lan-
guage. The use of an identifier is op-
tional. In case an identifier is used, it
is suggested to make it unique within
an object model.

Comment

instantiated from

0, * 1,1

0, * 0,*

relates to
Object

C 06

C 05 C 05

C 06

C 08

C 08

C 09

C 09

C 07

C 07

37

The generalisation hierarchy rendered in fig. 19 shows the the various kinds of attributes and
services described in 4.3.2. Among other things, their differentiation is motivated by the aim
to express the semantics of inheritance on a syntactic level.AccessType allows to specify ac-
cess rights for attributes and associated objects, differentiated into four modes of access: read,
write, add and remove.Privilege, which can also be assigned to services, serves to specify one
ot three access scopes:public, protectedandprivate (see 4.3.1). The concepts represented in
fig. 21 provide a specification of attributes and their possible redefinitions.Specialisability was
not assigned to the general conceptBasicAttribute since it does not make sense forDeferredAt-
tributes.

Fig. 19: Services and Attributes - Generalisation Hierarchy

Class
Feature

Attribute

Redefined
Attribute

Deferred
Service

BasicAttribute

AttriAccess
Service

Propagated
Service

AssocAccess
Service

Regular
ServiceRedefined

AttriService

Redefined
AssocService

Deferred
Attribute

BasicService

Redefined
RegularService

Service

The Specialisability
attribute of a Defer-
redService has to be
ignored.

C 10

C 10

38

Privileges for adding and remov-
ing elements may be instantiated
only if the maximum cardinality
of the attribute’s multiplicity is
larger than one. In case minCard
= maxCard, it has to be made
sure that adding or removing an
element will not hurt this con-
straint in the end.

A

read

1,1

An instance of Symbol has to be el-
ement of the set (#public, #protect-
ed, #private).

Fig. 20: Access Rights and other Concepts

AccessType

Redefining access types within
inherited attributes may result in
invalid services (for instance: if
write access is set to private). In
this case, the corresponding
services have to be redefined in
an appropriate way.

Privilege

Symbol

A

write

add

remove

1,1

0,1

0,1

PrivilegeA

PrivilegeA

PrivilegeA

Privilege
defined by

1,1

C 11

C 11

C 12C 12

Labeled
Object

StringA
label

The label of an instance
of LabeledObject does
not have to be unique
within any scope.

0,1

39

An exception assigned to an inherited service may be redefined. The abstract conceptService
was introduced in order to assign aSpecialisability attribute. The default values of both, the
classand themulitplicity attribute of theSpecialisability attribute are "true". That is to indicate
that classes of inherited parameters and returned objects may be redefined according to the co-
variance rule or that multiplicities may be redefined respectively.

A redefined service may be specialised fromAttriAccessService, AssocAccessService, or
RegularService - no matter whichBasicService it redefines (see fig. 22). This implies, for in-
stance, that a service inherited from aRegularService can be redefined to become a service to
access an associated object (RedefinedAssocService) or an attribute (RedefinedAttriService).
Also, a service inherited from anAttriAccessService may be redefined as kind of aRegularS-
ervice (RedefinedRegularService). As already stated, a service inherited from aAttriAc-

Redefined
Attribute

BasicAttribute

Class

Boolean

Instance

Any specialisation hierarchy has to
start with an instance of Attribute.

specialised from

1,10,*

A

A

history

name

default

1,1

1,1

0,1

StringA

MultiplicityA
1,1

access

number

specifies

1,10,*

Instance has to be an instance of the
class that specifies the correspond-
ing instance of Attribute.

Fig. 21: Attributes (1)

AccessTypeA
1,1

Attribute

C 14C 13

C 13

C 14

C 15

C 15

C 16

The Class a specialised attribute is
part of must be kind of the class of
the attribute that is being specialised.

Class

MultiplicityA
0,1

number

specifies

0,10,*

C 17

C 16 Multiplicity within RedefinedAttribute
may be instantiated only if the multi-
plicity attribute of Specialisability is
not set to "false". In this case, multi-
plicity has to be a subrange of the
multiplicity (not the same range!) of
the redefined attribute.

Specialisability

Specialisabili-A

A

0,1

0,1
C 17 Class within RedefinedAttribute may

be instantiated only if the class at-
tribute of Specialisability is not set to
"false". In this case, the assigned
class has to be a subclass of the
class the redefined attribute is speci-
fied with ("covariance rule").

40

cessService must not be redefined as aRedefinedAttriService. Similar toRedefinedAttriServ-
ice, a redefinedPropagatedService could be introduced. It could be a redefinition of anyBa-
sicService except aPropagatedService. However, we assume that there is no need for such a
concept. Any type of service allows for the assignment of aPrecondition and aPostcondition.
However, default access services will usually include an implicit definition of these features.
For aDeferredService these assignements are optional, too.Control can be assigned toRegu-
larService andRedefinedRegularServcice only since we assume that it is implicitly defined
for default access services or must not be defined for aDeferredService.

As already mentioned above, the different types of service concepts within the metamodel are
to support a definition of specialisation on a syntactic level. While such an approach makes it
easier to check a model for formal correctness, it may have to be changed when it comes to
design a corresponding tool: During the life cycle of a model, model elements may change the
concepts they belong to. Within a tool, this would impose the problem to deal with instances
that migrate to another class.

41

BasicService

Signature
includes

A
1,1

Class
specifies

1,1 0,*
StringA

name

1,1

Control

1,10,*

in
cl

ud
es

Parameter

next
0,1 0,1

Multiplicity

1,
1

1,
1

A

1,1 1,1

returns

MultiplicityA
1,1

specifies

Returned
Object

redefines Redefined
RegularService

0,*1,1

Redefined
AttriService

Redefined
AssocService

redefines

redefines

0,*1,1

0,*1,1

Class

The Class a redefined
service is part of, must be
kind of the class of the
service that is redefined.

Fig. 22: Services (1)

The ReturnedObject within a
redefined service has to be
kind of the ReturnedObject of
the original service (covari-
ance rule).

In some cases of redefined serv-
ices, the ReturnedObject will not
be different from the one of the
service they are redefined from.

C 18

C 19

C 18

C 19

Classes and Multiplicities within Param-
eters and ReturnedObject of inherited
services may be redefined only if the
corresponding attributes of the Special-
isability attribute is not set to "false". In
this case, the rules for redefining Class
(covariance) and Multiplicity apply.

C 20

Precondition

Postcondition

A

A

0,1

0,1

Regular
Service

Service SpecialisabilityA
0,1

C 20

name

1,1
StringA

42

Propagated
Service

BasicService

1,1

1,1

Attribute

refers to

refers to

part of

specifies

0,*

0,* 1,10,*

1,10,*

The BasicService has
to be part of the same
instance of Generic-
Class that serves to
specify the Attribute.

A PropagatedService
has to be part of a Ge-
nericClass that is kind of
(same as or subclass)
the GenericClass the re-
ferred Attribute is part
of.

Except for its name and the names of
its parameters, the signature of a
PropagatedService has to be the
same as the one of the referred Basic-
Service. The ReturnedObject has to
correspond to the one of the Basic-
Service.

AttriAccess
Service 1,1 1,1

Basic
Attribute

An AttriAccessService has to be
part of a Class that is kind of the
Class the BasicAttribute belongs
to.

The Parameters and the Re-
turnedObject have to corre-
spond to the Class the BasicAt-
tribute is specified by.

Fig. 23: Services (2)

C 23

C 22 C 23

C 23

C 24

C 25C 24

Generic
Class

C 25 C 26

C 26

refers to

AssocAccess
Service 1,1 1,1

refers to Association
Link

An AssocAccessService can be in-
stantiated only if the reference at-
tribute of the corresponding Associa-
tionLink is set to "true".

An AssocAccessService has to be
part of a Class that is kind of the
Class the AssociationLink belongs to.

The Parameters and the ReturnedO-
bject have to correspond to the Class
of the associated object.

C 21

C 21

43

As already stated above, both triggers and guards can be redefined without any restrictions.
Notice that this is only due to the fact that there is currently no formal language to specify
guards and triggers. Nevertheless, the designer has to beware of arbitrary redefinitions. It is
certainly not acceptable for a guard (or a trigger) to contradict a guard (or a trigger) of a super-
class. Since guards and triggers will often be transformed into services, it is also important not
to hurt the rules for redefining services.

5.2 Associations

Within inherited associations, the class of associated objects and their multiplicities can be re-
defined (see 4.2). Unfortunately, the differences between the three kinds of associations within
MEMO-OML, interaction, aggregation and delegation, do not allow for one common abstrac-
tion. Therefore, the corresponding part of the metamodel is large and probably not very read-
able.AssociationLink is the most general concept. It has four attributes.Specialisability allows

Class
Feature

BasicTrigger

BasicGuard Redefined-
Guard

Guard

Redefined-
Trigger

Trigger

BasicTrigger

BasicGuard
Redefined-

Guard

Redefined-
Trigger

redefines

1,10,*

redefines

1,10,*

A RedefinedGuard must be part
of a class that is kind of the class
the associated BasicGuard is
part of.

Fig. 24: Triggers and guards

C 27

C 28
C 28

C 27

A RedefinedTrigger must be part
of a class that is kind of the class
the associated BasicTrigger is
part of.

name

1,1
StringA

name

1,1
StringA

Guard

Trigger

44

to express whether the class or the multiplicity of a concept (e.g. an attribute or an associated
object) may be redefined. If redefinition is prohibited, the corresponding boolean attributes
have to be set to "false" (the default is "true").ContextRole allows to annotate a class that par-
ticipates in an association. It does not contain any semantics. Nevertheless, if two context roles
are used within an association, the names of both roles have to be different (otherwise the con-
cept of a context role would not make much sense). The attributehistory allows to specify
whether any state change of an associated object should be recorded, while the attributeaccess
allows to define access rights. Both concepts are used in the same way as they are used for at-
tributes.

Aggregations as well as delegation associations allow to specialise the associated classes.
Since the maximum cardinality assigned to aRoleholderLink and anAggregateLink is one, spe-
cialising the multiplicity is possible in one case only: from (0,1) to (1,1). Allowing for special-
isation of associations results in a more complex and less elegant model (see fig. 25-30). It re-
flects the rules described for specialising associations in 4.2.

Association
Link

role
ContextRoleA

0,1

A ContextRole may be assigned to
an AssociationLink. ContextRole
serves as an annotation only. It does
not include any formal semantics. It
may be redefined within any special-
ised association. In case the at-
tribute specialisation is not instanti-
ated the AssocationLink must not be
specialised.

SpecialisabilityA
0,1

Fig. 25: Associations - Basics

BooleanA
history

1,1

access
AccessTypeA

1,1

reference
BooleanA

0,1

If the reference attribute is set to
true, the object directly associat-
ed with an AssociationLink has
to have a reference to the object
it is associated to through the
AssociationLink. It is optional
only during information analysis.
It has to be instantiated in order
to allow to specify (or generate)
access services.

C 29

The Multiplicity attribute of Spe-
cialisability may be true only if
the class attribute is true, too, or
if the class attribute of the asso-
ciated AssociationLink is true.

C 29

GenericClass
1,1 0,*

linked via

45

Fig. 26: Associations - Generalisation Hierarchy

Association
Link

Basic
Interaction

Basic
Roleholder

BasicRole

Interaction
Link

Redefined
Interaction

Redefined
Aggregate

Aggregate
Link

Deferred
Interaction

Deferred
Aggregate

BasicPart

Redefined
Part

PartLink

Deferred
Part

Basic
Aggregate

Redefined
Role

RoleLink

Deferred
Role

Roleholder
Link

Redefined
Roleholder

Deferred
Roleholder

Basic
RoleConcept

46

The constraints C1 and C2 in fig. 27 are basically the same for all types of associations. How-
ever, since there is no common generalisation forRedefinedInteraction, RedefinedAggregate
etc. on a sufficiently specialised level, it is not possible to express general constraints.

Fig. 27: Interaction Associations

1,1

Interaction
Link

1,1

Basic
Interaction

MultiplicityA
1,1

Interaction

Redefined
Interaction0,*1,1

specialised from

BasicInteraction has to belong to a
superclass of the class Redefined-
Interaction belongs to.

At least one of the two attributes of
Specialisability assigned to BasicIn-
teraction has to be assigned "true".

Multiplicity within RedefinedInteraction may be instantiated only if the multiplicity at-
tribute of Specialisability within the associated BasicInteraction (or within one it has
inherited) is not set to "false". In this case multiplicity has to be a subrange of the
multiplicity (not the same range!) assigned within the associated BasicInteraction.

The sum of the minimum cardinalities within inherited or overridden multiplicities
must not exceed the maximun cardinality of the multiplicity assigned to a common
superclass of those classes.

A GenericClass may be assigned only if the class attribute of Specialisability within
the associated BasicInteraction is not set to "false". In this case the assigned class
has to be a subclass of the class assigned to the corresponding InteractionLink ("co-
variance rule").

GenericClass
linked via

0,* 1,1

MultiplicityA
0,1

GenericClass
linked via

0,* 0,1

Deferred
Interaction

MultiplicityA
0,1

AbstractClass
linked via

0,* 0,1

C 30

C 30

C 31

C 31 C 32

C 32

C 34

C 33

C 34

C 33

47

While one could argue that an association is deferred if it is not sufficiently specified (for in-
stance: if one multiplicity is missing), MEMO-OML requires a deferred association to be
linked via an abstract class.

Deferred
Aggregate

MultiplicityA
0,1

AbstractClass
linked via

0,* 0,1

Deferred
Part

MultiplicityA
0,1

AbstractClass
linked via

0,* 0,1

Deferred
Roleholder

AbstractClass
linked via

0,* 0,1

Deferred
Role

MultiplicityA
0,1

AbstractClass
linked via

0,* 0,1

Fig. 28: Deferred Associations

48

Fig. 29: Aggregations

Aggregation

1,1

Aggregate
Link

1,1

Basic
Aggregate

MultiplicityA
1,1

Redefined
Aggregate0,*1,1

GenericClass
linked via

0,* 1,1

MultiplicityA
0,1

GenericClass
linked via

0,* 0,1

BasicPart

BasicAggregate (BasicPart) has to
belong to a superclass of the class
RedefinedAggregate (Redefined-
Part) belongs to.

At least one of the two attributes of
Specialisability assigned to Basi-
cAggregate (BasicPart) has to be
assigned "true".

1,1

1,1
Basic

Aggregate

MultiplicityA
1,1

Redefined
Part0,*1,1

specialised from

GenericClass
linked via

0,* 1,1

MultiplicityA
0,1

GenericClass
linked via

0,* 0,1

PartLink

BasicPart

Multiplicity within RedefinedAggregate (RedefinedPart) may be instantiated only if the mul-
tiplicity attribute of Specialisability within the associated BasicAggregate (BasicPart) (or
within one it has inherited) is not set to "false". In this case multiplicity has to be a subrange
of the multiplicity (not the same range!) assigned within the associated BasicPart (BasicAg-
gregate).

The sum of the minimum cardinalities within inherited or overridden multiplicities must not
exceed the maximun cardinality of the multiplicity assigned to a common superclass of
those classes.

A GenericClass may be assigned only if the class attribute of Specialisability within the as-
sociated BasicAggregate (BasicPart) is not set to "false". In this case the assigned class
has to be a subclass of the class assigned to the corresponding AggregateLink (PartLink)
("covariance rule").

specialised from

C 35

C 35

C 36

C 36 C 37

C 38

C 37

C 39

C 38

C 39

C 35 C 36 C 37

C 38

C 39

49

Fig. 30: Delegation

Delegation

1,1

Roleholder
Link

1,1

Basic
Roleholder

MultiplicityA
1,1

Redefined
Roleholder0,*1,1

specialised from

GenericClass
linked via

0,* 1,1

MultiplicityA
0,1

GenericClass
linked via

0,* 0,1

BasicRole

BasicRoleholder (BasicRole) has to
belong to a superclass of the class
RedefinedRoleholder (Redefined-
Role) belongs to.

At least one of the two attributes of
Specialisability assigned to Basic-
Roleholder (BasicRole) has to be
assigned "true".

1,1

1,1
Basic

RoleConcept

MultiplicityA
1,1

Redefined
Role0,*1,1

specialised from

GenericClass
linked via

0,* 1,1

MultiplicityA
0,1

GenericClass
linked via

0,* 0,1

RoleLink

BasicRole

Multiplicity within RedefinedRoleholder (RedefinedRole) may be instantiated only if the
multiplicity attribute of Specialisability within the associated BasicRoleholder (BasicRole)
(or within one it has inherited) is not set to "false". In this case multiplicity has to be a sub-
range of the multiplicity (not the same range!) assigned within the associated BasicRole
(BasicRoleholder).

The sum of the minimum cardinalities within inherited or redefined multiplicities must not
exceed the maximun cardinality of the multiplicity assigned to a common superclass of
those classes.

A GenericClass may be assigned only if the class attribute of Specialisability within the as-
sociated BasicRoleholder (BasicRole) is not set to "false". In this case the assigned class
has to be a subclass of the class assigned to the corresponding RoleholderLink (RoleLink)
("covariance rule").

C 40

C 40

C 41

C 41

C 42

C 43

C 44

C 40 C 41

C 42

C 43

C 44

C 42

C 43

C 44

C 45

While a Role can act as a Role-
holder (multi level delegation),
every multi level delegation
chain has to be terminated with
a Roleholder.

C 45

50

5.3 Metaclasses

While it is arguable whether it makes sense to regard classes as objects within conceptual mod-
elling, this idea can be useful to specify information which is required for system design. For
this reason, MEMO-OML offers metaclass as an optional concept. A metaclass is a class with
exactly one instance which has to be a class (GenericClass). A class in turn must not have more
than one metaclass. We defineMetaclass as a concept with two attributes which are specified
by MetaAttribute andMetaService. Different fromGenericClass, aMetaclass does not have a
subclass or a superclass. Therefore (and for other reasons as well), it is not feasible to use the
corresponding concepts defined for classes (BasicAttribute or BasicService). Notice thatMet-
aclass does not require a specific name. Instead its name can be composed of "Meta" and the
name of its sole instance, like "MetaPerson".

Metaclass

instance of

0,1

1,1

Fig. 31: Metaclass

Not every GenericClass has to
be assigned a Metaclass (in
most cases that will be out of
scope). However, a Metaclass
depends on a corresponding
GenericClass.

C 46

Precondition

Postcondition

A

A

0,1

0,1

Meta
Attribute

A

Meta
Service

A

Returned
Object

Signature

Generic
Class

MultiplicityA
1,1

1,1

specified by
1,1

includes

returns

post

pre

1,1

Generic
Class

C 46

The GenericClass a
MetaAttribute is specified
by must not be kind of the
GenericClass that is in-
stance of the correspond-
ing Metaclass.

Model
Element

Meta
Attribute

Meta
Service

Named
Object

51

5.4 Organisation Concepts

The organisation concepts shown in fig. 32, likeCategory, Protocol, Framework etc., serve to
group model elements according to specific puposes. Thevisibleattribute ofGenericClass al-
lows to express that a class (that is its specification and may be its implementation) should not
be visible for further specialisation or even modification. Such a feature can be useful for the
description of frameworks.DesignPattern is defined according to the description in 4.3.6. It
serves primarily to allow for a structured documentation of clusters and frameworks. Res-
source concepts, likePlatform, OS or Language, allow to enhance a model with implementa-
tion specific information. Notice that these concepts could be specified as classes using
MEMO-OML. However, sometimes there is need for a rudimentary description of ressources
only. In these cases, it may be regarded as too much of an effort to design an object model for
ressources.

52

Fig. 32: Modularisation and Architecture

Framework

Category

OS

Design
Pattern

Protocol

Attribute
Group

Named
Object

Cluster

Boolean
visible

A
0,1

0,*

implemented

1,1
A

Generic
Class

Language Platform

Interface
Language

executes on

Processor
part of

part of

available through

0,*0,*

ClassImple-
mentation

0,*0,*

1,1

1,10,*

0,*

defines

0,*1,*

OS

Processor

Language

Basic
Service

assigned to
1,1 0,*

1,1 0,*

1,1 0,*

assigned to

assigned to Basic
Attribute

Generic
Class

Abstract
Cluster

53

5.5 Stored References to Associated Objects

During most time of conceptual modelling, it is advisable to abstract from the question how
references to associated objects are managed. However, in order to prepare for implementa-
tion, it can be helpful to add this information. In most implementation level languages, associ-
ations are implemented through variables that store references to associated objects. The at-
tributereferencewithin anAssociationLink allows to express whether or not the objects of the
corresponding class should store a reference to the object(s) they are linked to through a par-
ticular association (see fig. 34). In the final version of an object model, at least one of two as-
sociatedAssociationLinks should have set reference to "true". This is a "weak" constraint, since

Fig. 33: Modularisation and Architecture

Cluster
composed of

0,*0,*
Generic
Class

documented by

0,1 0,*

Abstract
Cluster

The classes a framework consists of have to be im-
plemented. (Usually some of those classes will not
allow for any modification - they are "frozen".)

part of

0,*0,*

participants

related to

0,*0,*

StringA

Generic
Class

StringA

StringA

StringA

StringA

Cluster

Design
Pattern

purpose

1,1

motivation

1,1
applicability

1,1

dynamics

1,1

consequences

1,1

0,*0,*

structure

1,1

StringA

implementation

1,1

sample code

0,1

Cluster

The cluster that represents
an implementation has to
consist of implemented
classes only.

The specification of DesignPat-
tern is only preliminary. This is
especially the case for the de-
scription of dynamics which
should rather be done be refer-
ing to a dynamic model, for in-
stance a sequence chart.

C 47

C 47

C 48

C 48

54

it is possible to store references at other places as well (e.g. in special management objects).
Notice that this information is also necessary in order to decide whether or not default access
services are available (see 4.3.2).

5.6 Persistence

Every class in a MEMO-OML object model can be assigned the boolean attributepersistent
that specifies whether or not the instances of this class should be persistent during their life-
time. In order to prepare for indexed access to attributes, an attribute can be assigned the
boolean attributeindexed. Notice that further specifications may be required to define precise-
ly the content and structure of that information.

5.7 User Interface Concepts

The user interface of a system to be developed is often regarded not to be subject of conceptual
modelling, since a conceptual model should focus on features which are essential to the rele-
vant domain. Nevertheless it can be helpful to include information that is relevant for the im-
plementation of a user interface. This is for various reasons:

• Productivity: The design and implementation of the user interface consumes a considerable
amount of the overall system development time. Enhancing an object model with informa-
tion concerning the user interface may contribute to faster development cycles by allowing
for reuse and code generation.

• Quality: The user interface can be a complex part of the entire system. An abstract descrip-
tion improves the chances for a well designed and consistent user interface.

Notice, however, that adding specific information to an object model is hardly efficient for a
complete specification of a user interface: The interaction with the classes of a system may
vary with the context. An object model, however, does not allow to express certain contexts of
interaction with a system. Those contexts can be taken into account within other perspectives,
like process or workflow models.

In order to prepare for a rudimentary model of a user interface, it can be helpful to assign a

Boolean
persistent

A
0,1

Generic
Class

Boolean
indexed

A
0,1

Basic
Attribute

Association
Link

reference
BooleanA

1,1

Finally, at least one of two as-
sociated AssociationLinks
should have the reference at-
tribute set to "true".

In case an attribute is
specified as an object of a
class with various features,
implementation requires
additional information on
how to build an index.

Fig. 34: Implementation-oriented Refinements

C 49
C 49

55

default user interface to every class in an object model. However, not every class will require
an explicit assignment. Often, a user interface can be constructed from the user interfaces pre-
viously assigned to (or constructed for) classes of attributes, associated objects, parameters and
returned objects. Within an object-oriented information system, the functionality of a user in-
terface will usually be specified by an object model (or more likely: a framework of imple-
mented classes). In other words: User interface concepts are rather an application of an object-
oriented modelling language than part of it. Therefore, the preliminary classes we introduce
for describing aspects of a user interface will be specified later as an object model using
MEMO-OML (see 6). We do need, however, a few enhancements of MEMO-OML in order
to allow for UI-specific enhancements of an object model.

The conceptGenericClass within the metamodel is modified by adding an optional attribute.
The attribute is specified by a class which is described in the user interface object model al-
ready mentioned. In the current version, this will be the classAbstractComponent (see fig. 43).
Often it will be necessary to present a label with an interaction component. For this purpose, a
label can be assigned to any class, attribute or service. In the case of default access services the
label can be derived from the accessed attribute or associated object. That label may, however,
be overridden. The metamodel definesLabel as a concept that can be instantiated with strings
for multi-national versions of software.

Label

Model
Element

Name

Language
String

String

String

String

name
1,1

language

1,1

font

0,1

expressed by

1,*
A

A

A

A

presented with LabelA

0,1

0,1

0,1

BasicService

BasicAttribute

LabelA

LabelA

presented with

presented with

defaultUI

0,1
GenericClass GenericClass

GenericClass

A

Only those instances of Gener-
icClass can be used to specify
the defaultUI attribute which
are defined in the correspond-
ing object model (like Abstract-
Component).

C 50<

Fig. 35: User Interface Concepts

C 50

56

5.8 The Graphical Notation

Defining a notation for a modelling language is a delicate task. On the one hand, the notation
can be exptected to have a pivotal impact on the way people perceive a model. On the other
hand, there is lack of research on user perceptions and preferences concerning graphical rep-
resentations of information ([Fra97]). In this situation, the definition of a graphical notation
has to be preliminary. While it should be based on plausible assumptions, feedback from future
users may result in revised versions. The current version of the MEMO-OML notation is pri-
marily based our own preferences. We also tried to take into account the following require-
ments (see [Rum96a]) some of which are hard to judge:

• no overloading of notation elements

• clear distinction between different elements of the notation

• clear correspondence between concepts and elements of the notation

• convenient to draw by hand

• easy to memorize

• elements that are used often should be to render quickly

• appropriate for single colour printers and fax machines

The notation is similar to the one we have already used for rendering the metamodel. Notice
that the colours used within the notation are optional. The description of the notation intro-
duced below is not complete in the sense that it includes explicitely all possible elements of
the notation. Introducing a graphical notation of redefined associations is motivated by the fact
that redefinitions are often required. Therefore, a specific notation fosters the convenience and
the consistence of using MEMO-OML. Notice, however, that in the case of multiple inherit-
ance the arrow indicating a redefined association may be ambique: There may be different as-
sociations of the same kind (but with different interpretations) a class has inherited from dif-
ferent superclasses. In this case an additional constraint has to be used to specify the associa-
tion that has been redefined.

Due to its graphical nature, the notation is not described in a formal way. Therefore the use of
the symbols listed below allows for - and recommends - a certain degree of flexibility. This is
especially the case for the layout of models, e.g. for connecting symbols via arcs or lines. The
example arcs/lines shown below are not to indicate that any arc/line in a particular model has
to be drawn in a corresponding way.

5.8.1 Naming Conventions

Strings used for naming modelling elements must be in line with naming conventions defined
for these elements. We will, for instance, suggest class names to begin with an upper case let-
ter. In contrast, names used for attributes or services should begin with a lower case letter. If
precise specification of naming conventions are available, they can be assigned to the attribute
naming of any appropriate instance ofMetaConcept within the meta-metamodel.

The textual designators used within the graphical representation of an object model are usually
not of crucial importance: Often additional specifications will be documented outside a dia-
gram - either on paper or within a tool. Nevertheless, we will provide a precise definition of
the designators, some of which are optional. For this purpose we use the terminal symbols in-

57

troduced for the description of metamodels (see 2.1) and extend them with additional symbols
to be used with MEMO-OML only. Since the decision for the formal language to specify con-
straints, guards, etc. has not been made yet, <expression> remains undefined at this stage. Al-
so, the definition does not include any semantic constraints. The non-terminal symbols used in
the description of the graphical symbols are typed in boldface.

Access Privileges(corresponds toAccessType andPrivilege in the metamodel)

<privilege> ::= ’public’ | ’protected’ | ’private’

<getAccess> ::= ’Get: ’ <privilege>

<putAccess> ::= ’Put: ’ <privilege>

<addAccess> ::= ’Add: ’ <privilege>

<removeAccess> ::= ’Remove: ’ <privilege>

Associations

<rolename> ::= <lowerString>

Classes

<classname> ::= <upperString>

<maxLabel> ::= ’max. size: ’ | ’max. number: ’ | ...

<maxInstances> ::= ’(’ <maxLabel> <PositiveInteger> ’)’

<classlabel> ::= <classname> [<maxInstances>]

Constraints/Comments

<constraintkey> ::= ’C’ <number>

<commentkey> ::= <number>

Attributes

<defaultValue> ::= ’, default: ’ <String>

<fixedSymbol> ::= ’F’

<redefinedSymbol> ::= ’R’

<deferredSymbol> ::= ’O’

<ordered> ::= ’ordered’ | ’sorted’

<attributeName> ::= <lowerString>

<regularAttributeSpec> ::= <attributeName> <classname> [<multiplicity>] [<defaultValue>]
[<ordered>] [<getAccess>] [<putAccess>] [<addAccess>] [<removeAccess>]

<deferredAttributeSpec> ::= <deferredSymbol> <regularAttributeSpec>

<redefinedAttributeSpec> ::= <redefinedSymbol> <regularAttributeSpec>

<fixedAttributeSpec> ::= <fixedSymbol> <regularAttributeSpec> "attribute that must not be redefined"

<attributeSpecList> ::= [{<regularAttributeSpec> <LineFeed>}] [{<deferredAttributeSpec>
<LineFeed>}] [{<redefinedAttributeSpec> <LineFeed>}]

Services

In case the maximum cardinality within the multiplicity of a parameter or a returned object is
less than 2, it is optional to explicitly specify it.

<serviceBaseName> ::= <lowerString>

<paramSpec> ::= <lowerString> ’ [’ <classname> [<multiplicity>] ’]’

58

<smalltalkStyleSig> ::= <serviceBaseName> [’: ’ <paramSpec>] [{<lowerString>’: ’ <paramSpec>}] ’ -
>’ <classname> [’ - ’ <multiplicity>]

<cStyleSig> ::= <serviceBaseName> [’(’ <paramSpec> [{’, ’ <paramSpec>}]’)’] ’ ->’ <classname> [’ - ’
<multiplicity>]

<regularSignatureSpec> ::= <smalltalkStyleSig> | <cStyleSig> [<privilege>]

<deferredServiceSpec> ::= <deferredSymbol> <regularSignatureSpec>

<redefinedServiceSpec> ::= <redefinedSymbol> <regularSignatureSpec>

<fixedServiceSpec> ::= <fixedSymbol> <regularServiceSpec> "service that must not be redefined"

<propagatedServiceSpec> := <regularSignatureSpec> ’prop. from: ’ <attributeName>

<serviceSpecList> ::= [{<regularServiceSpec> <LineFeed>}] [{<deferredServiceSpec> <LineFeed>}]
[{<redefinedServiceSpec> <LineFeed>}]

Guards and Trigger

<guardSpec> ::= <lowerString> [’(’ <expression> ’)’]

<redefinedGuardSpec> ::= <redefinedSymbol> <guardSpec>

<guardSpecList> := [{<guardSpec>}] [{redefinedGuardSpec}]

<triggerSpec> := <lowerString> [’(’ <expression> ‘)]

<redefinedTriggerSpec> ::= <redefinedSymbol> <TriggerSpec>

<triggerSpecList> := [{<TriggerSpec>}] [{redefinedTriggerSpec}]

Redefined Associations

<redefinedID> ::= ’S ’ <number>

<classRedefinitionSpec> ::= ’redefines: ’ <classname> ’ in: ’ <classname> <designator>
<classname> ’ with: ’ <classname>

<multiRedefinitionSpec> ::= ’redefines multi for: ’ <classname> ’ in: ’ <classname> <designator>
<classname>

Management and Organisation

<frameworkName> := <upperString>

<clusterName> := <upperString>

<patternName> := <upperString>

<platformName> := <String>

Any name used for a class feature must be unique within all class features of the same kind in
the scope a class. Additionally, it should be taken into account that default access services are
related to certain attributes or associated objects. In order to illustrate this relationship, it is a
good idea that the names of the access services correspond to the name of the attribute. For this
purpose, we suggest the following conventions for naming default access services, using a no-
tation that is inspired by the Bachus-Naur form but less rigid. The definition of attributeName
and serviceBaseName are provided above. The names of access services for a particular at-
tribute with the name ’example’ would be constructed as follows (restricted to signatures spec-
ified in the Smalltalk style):

<aBase> ::= ’example’

<anUpper> ::= ’Example’

<aParamSpec> ::= <paramSpec>, with the name of the attribute’s class used as a terminal symbol for
<classname>. <lowerString> could be represented by ’a’, <classname>, in this case with
the name of the class the attribute is part of as a replacement for <classname>.

59

The colon indicates that a parameter has to be provided. Using the plural form of the attribute
name can be considered as a preliminary default that is not always appropriate since the at-
tribute name itself may already be in the plural. Also, at this point, it is not necessary to con-
sider possible linguistic rules which would allow to generate a plural form.

In case the elements of an attribute are ordered, the additional access services would be named
as follows:

In case services have to be specified in a different style, the construction rules have to be adapt-
ed (for instance to the C-style described above.

Example:

Such a naming convention makes sense only if the signatures of services other than default ac-
cess services do not interfere with it. Generating names for default access services that provide
access to associated objects is more difficult. At first sight - and this will do in many cases - it
seems to be sufficient to apply a convention that directly corresponds to the one used for serv-
ices that access attributes: Instead of the attribute’s name you would take the name of the as-
sociated class. For instance: Accessing the department an employee is assigned to would be
accomplished by services likedepartmentor department:. However, in a case where a class is
associated more than one time with a particular other class (see example in fig. 36), this con-
vention is obviously not sufficient.

Multiplicity get put remove Element add Element

0,1 <aBase> <aBase> ’:’ aPa-
ramSpec

0,* plural of
<aBase>

plural of <aBase> ’:’
<aParamSpec>

’remove’ <anUpper> ’:’
<aParamSpec>

’add’ <anUpper>:
<aParamSpec>

get last get first add after Element

’last’ <anUpper> ’first’ <anUpper> ’addAfter’ <anUpper> ’:’ <aParamSpec>

add before Element get after Element get before Element

’addBefore’ <anUpper> ’:’
<aParamSpec>

’after’ <anUpper> ’:’
<aParamSpec>

’before’ <anUpper> ’:’
<aParamSpec>

Attribute Multiplicity get put remove Element add Element

lastName 0,1 lastName lastName:
aString
[String]

language 0,* languages languages:
aString
[String - 0,*]

removeLanguage:
aString [String]

addLanguage:
aString [String]

60

In those cases, the readability of a model requires the use of - otherwise optional - labels for
the associations. Those labels can then be used to compose unique service names - like "pro-
curedProducts". For the purpose of a language description it is not essential to care about the
maintenance of a model. This is different with an object model for a tool that serves to manage
models designed in this language. For such an object model it is a good idea to enforce a certain
naming convention in order to avoid misleading names.

5.8.2 Graphical Symbols

The following figures render the graphical symbols to be used with MEMO-OML.

Company

Product

produces

0,*0,*

Product
0,*0,*

procure

Fig. 36: Different Associations with the same Class.

Class Specification

It is recommended to use
labels for the different cate-
gories of class features,
and to draw lines between
them.

<classlabel>

[’Attributes’]

<attributeSpecList>

[’Services’]

<serviceSpecList>

[’Guards’]

<guardSpecList>

[’Triggers’]

<triggerSpecList>

Fig. 37: MEMO-OML Notation (1)

instance of Class

instance of AbstractClass

<classname>

instance of an instance of Class

instance of Metaclass (GenericClass)

<classname>

<classname>

<classname>

61

generalisation
(between instances of

GenericClass)

single inheritance

multiple inheritance

"is kind of" (both for sin-
gle and multiple inheri-
tance)

Fig. 38: MEMO-OML Notation (2)

subtyping
(between instances of

GenericClass)

single subtyping

multiple inheritance

a combination of inheri-
tance and subtyping is
not permitted (see p. 23)

62

C ## Constraint
(instance of Constraint, n serves
as a unique reference within a
model). The use of colour for the
identifier is optional.

Comment
(instance of Comment)

<expression>

<String>

Fig. 39: MEMO-OML Notation (3)

[<assocDesignator>]

<multiplicity>

Associations (1)

Interaction Association

deferred Association

association link that must
not be redefined (to be
used explicitly for class
and multiplicity)

redefined Association (to
be used explicitly for class
and multiplicity)

Reference

Combination of symbols

<constraintKey>

[<commentKey>]

<multiplicity>

[<assocDesignator>]

<multiplicity><multiplicity>

[<assocDesignator>]

<multiplicity><multiplicity>

[<assocDesignator>]

<multiplicity><multiplicity>

[<assocDesignator>]

<multiplicity><multiplicity>

[<assocDesignator>]

<multiplicity><multiplicity>

####

C ##

[<multiRedefinitionSpec>] | [specID]

[<classRedefinitionSpec>] | [specID]

63

<attributeName>

Attribute (alternative)

(association between in-
stance of subclass of
GenericClass and in-

stance of BasicAttribute)

Attribute

deferred Attribute

redefined Attribute

Associations (2)

Context Role

Aggregation

Delegation

Combination of symbols

•+

•A

partaggregate

rolerole holder

••

•+

<rolename>

Fig. 40: MEMO-OML Notation (5)

•A

•A

[<assocDesignator>]

<multiplicity><multiplicity>

[<assocDesignator>]

<multiplicity><multiplicity>

[<assocDesignator>]

<multiplicity>

[<assocDesignator>]

<multiplicity><multiplicity>

<attributeName>

<attributeName>

<multiplicity>

<multiplicity>

<multiplicity>

64

Bicycle

RacingBike

BicylcePart
composed of

Fig. 41: Example for the notation to express redefined associations.

0, *0,1

SaddleWheelMountainBike

RacingWheel

2,2

{redefines : Wheel in : Bi-
cycle composed of Wheel
with: RacingWheel}

{redefines multi for :
BicyclePart in : Bicy-
cle composed of Bi-
cyclePart}

{redefines : Bicycle
in : Bicycle composed
of Wheel with : Rac-
ingBike}

S 1

S 1

S 2

S 2

Cluster

Framework

Design Pattern

Platform

Fig. 42: MEMO-OML notation (5)

<clusterName>

<frameworkName>

<patternName>

<platformName>

D
P

65

6. User Interface Classes

The preliminary object model that describes the classes to be used for the optional specifica-
tion of default user interfaces is based on the well known paradigm of today’s window-orient-
ed graphical user interfaces.BasicComponent is an abstract class that can be specialised in an
expandable number of interaction components, likeTextField, ListBox, PushButton, etc. A de-
tailed specification of those components will be subject of a future report. In general, aBasic-
Component can be assigned to any class. However, some classes may require additional spec-
ification in order to allow for such an assignment: ABasicComponent allows to present in-
stances of certain classes (usually of String) only. In case a class does not fit that requirement,
it could be assigned a service that delivers a representation of an instance in an appropriate way
(like: asString). As an alternative, such a class could be implicitly assigned aUIComposite. A
UIComposite consists of otherUIComposites and/or ofBasicComponents (see fig. 43). AUI-
Composite assigned to a particular class can be derived recursively from theAbstractCompo-
nents (see fig. 43) that are assigned to the classes used to specify that particular class’ at-
tributes, as well as the parameters and returned objects of its services.

It makes a difference whether one or more instances of a class are to be presented at one time.
Therefore each class can be assigned an additionalBasicComponent (like ListBox) that allows
to interact with multiple instances. Any class within an object model can be assigned a class
that serves to describe user interaction elements. Additionally, any class, attribute or service is
assigned a label it is to be presented with. Notice that, despite the identical notation, fig. 43
does not render a part of the MEMO-OML metamodel. Instead, it shows an object model de-
fined in MEMO-OML.

66

7. Future Work

We do not consider the specification of an object-oriented modelling language to be an end in
itself. It is to serve various purposes and users. In other words: It is an instrument for different
tasks used by people with different backgrounds. For this reason only, it is not advisable to
freeze a given modelling language without evaluating it against important requirements. Such
an evaluation recommends to have the language used by different users and refine it step by
step according to the feedback you get. With this intention in mind, MEMO-OML will be used
within software development projects at the institute and for teaching object-oriented model-
ling to students. One essential goal of future refinements is to fill the semantic gaps of the cur-
rent version, especially to introduce a specification language for constraints, pre- and postcon-
ditions, trigger etc.

In the end, it is not satisfactory to use an object-oriented modelling language without the sup-
port of a tool. Without a tool, it is very likely that a model will become inconsistent. Browsing,
searching and code generation are additional reasons to use a tool. Also, the construction and
maintenance of graphical representation can be more convenient if it is supported by a power-

Model
Element

0,*

Basic
Component

UI
Compositecomposed of

0,*

Class
assigned toAbstract

Component 0,1 0,*

Basic
Component

SingleSelect
List

Abstract
Button

ListBox

TextField

MultiSelect
List

Switch
Button

PushButton

Table

Fig. 43: Object Model of User Interface

67

ful tool. Therefore, we intend to build a new version of the Object Model Designer (OMD)
which will be part of the integrated tool environment MEMO Center ([Fra97]). In order to be
compatible with standard modelling languages, we plan to provide a transformation of
MEMO-OML models into other representation - which, however, may lead to a lack of seman-
tics.

68

References

[Car87] Cardelli, L: Basic polymorphic typechecking. In: Science of Computer Pro-
gramming, 8(2), April 1987, pp. 147-172

[Cas95] Castagna, G.: Covariance and Contravariance: Conflict without a Cause. In: ACM
Transactions on Programming Languages and Systems. Vol. 17, No. 3, 1995, pp.
431-447

[CaBa97] Cattell, R.G.G.; Barry, D.; Bartels, D. et al. (Ed.): The Object Database Standard -
ODMG 2.0. San Francisco: Morgan Kaufmann 1997

[CoPo95] Cotter, S.; Potel, M.: Inside taligent technology. Reading/Mass. et al.: Addison-
Wesley 1995

[Doy79] Doyle, J: A Truth-Maintenance System. In: Artificial Intelligence 12, 1979, pp.
231-272

[EbFr95] Ebert, J.; Franzke, A.: A Declarative Approach to Graph Based Modeling. In:
Mayr, E.; Schmidt, G.; Tinhofer, G. (Eds.): Graphtheoretic Concepts in Computer
Science. Berlin, Heidelberg etc.: Springer (LNCS 903) 1995, pp. 38-50

[EbSü97] Ebert, J.; Süttenbach, R.; Uhe, I.: Meta-CASE in Practice: a Case for KOGGE. In
Olive, A., Pastor, J. A. (Eds.): Advanced Information Systems Engineering, Pro-
ceedings of the 9th International Conference, CAiSE'97. Berlin, Heidelberg etc.:
Springer (LNCS 1250) 1997, pp. 203-216

[EbWi96] Ebert, J; Winter, A; Dahm, P.: Graph Based Modelling and Implementation with
EER/GRAL. Fachberichte Informatik, Universität Koblenz-Landau, Heft 11,
1996

[Ern97] Ernst, J.: Introduction to CDIF. 1997 (http://www.cdif.org/)

[FiHe96] Firesmith, D.; Henderson-Sellers, B.; Graham, I.; Page-Jones, M.: OPEN Mode-
ling Language (OML). Reference Manual. Version 1.0. 8 December 1996. http://
www.csse.swin.edu.au/OPEN/comn.html

[Fra97] Frank, U.: Enriching Object-Oriented Methods with Domain Specific Knowledge:
Outline of a Method for Enterprise Modelling. Arbeitsberichte des Instituts fuer
Wirtschaftsinformatik, Nr. 4, Koblenz 1997

[Fra98a] Object-Oriented Modelling Languages: State of the Art and Open Research Que-
stions. In: Schader, M.; Korthaus, A. (Ed.): The Unified Modeling Language.
Technical Aspects and Applications. Heidelberg, New York: Physica 1998, pp. 14-
31

[Fra98b] Frank, U.: The MEMO Meta-Metamodel. Arbeitsberichte des Instituts für Wirt-
schaftsinformatk, Nr. 9, Koblenz 1997

[FrHa97] Frank, U.; Halter, S.: Enhancing Object-Oriented Software Development with
Delegation. Arbeitsberichte des Instituts für Wirtschaftsinformatk, No. 2, Koblenz
1997

[Frz97] Franzke, A.: GRAL 2.0: A Reference Manual. Fachberichte Informatik, Universi-
tät Koblenz-Landau, 1997

69

[GaHe95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Reading/Mass. et al.: Addison-Wesley 1995

[GoSt90] Goldstein, R.C.; Storey, V.C.: Some Findings on the Intuitiveness of Entity Relati-
onship Constructs. In: Lochovsky, F.H. (Ed.): Entity Relationship Approach to
Database Design and Query. Amsterdam: Elsevier 1990

[Hit95] Hitchman, S.: Practitioner Perceptions on the Use of some Semantic Concepts in
the Entity Relationship Model In: European Journal of Information Systems, Vol.
4, 1995, pp. 31-40

[Joh92] Johnson, R.E.: Documenting frameworks using patterns. In: A Framework for
Network Protocol Software. In: Proceedings of the OOPSLA’92. New York et al.:
ACM Press 1992, S. 63-76

[LaNa95] Lange, D.B.; Nakamura, Y.: Interactive Visualization of Design Patterns Can
Help in Framework Understanding. In: Proceedings of the OOPSLA’95. New
York: ACM 1995, S. 342-357

[Mey97] Meyer, B.: Object-Oriented Software Construction. 2nd. ed., Upper Saddle River,
NJ: Prentice Hall 1997

[MCa86] McCarthy, J.: Applications of Circumscription to Formalizing Common-Sense
Knowledge. In: Artificial Intelligence 28, 1986, pp. 89-116

[MDD80] McDermott, D.; Doyle, J.: Non-Monotonic Logic 1. In: Artificial Intelligence 13,
1980, pp. 41-72

[Ope94] The OpenDoc Design Team, OpenDoc Technical Summary. Component Integra-
tion Laboratories, 1994 (http://www.cilabs.org)

[Pla97] Platinum: Object Analysis and Design Facility Response to OMG/OA&D RFP-1.
(http://www.omg.org/library/schedule/AD_RFP1.html)

[Rat97a] UML Semantics Appendix M2 - UML Meta-Metamodel. Vers. 1.0, 13 January
1997 (http://www.rational.com)

[Rat97b] Rational: Appendix M3: UML Meta-Metamodel Alignment with MOF and CDIF.
Vers. 1.0, 13 January 1997 (http://www.rational.com)

[Rat97c] Rational: UML-Summary. Version 1.1. 09/01/1997 (http://www.rational.com)

[Rat97d] Rational: OCL. Version 1.1. 09/01/1997 (http://www.rational.com)

[Rat97e] Rational: UML-Semantics. Version 1.1. 09/01/1997 (http://www.rational.com)

[Rat97f] Rational: UML-Notation Guide. Version 01.09/01/1997 (http://www.rational.com)

[Rat97g] Rational: UML-Notation Guide. Version 1.0. 01/13/1997 (http://www.ratio-
nal.com)

[Rat97h] Rational, Microsoft, Hewlett-Packard et al.: Object Constraint Language Specifi-
cation (http://www.software.ibm.com/ad/ocl)

[Rum91] Rumbaugh, J. et al.: Object-oriented Modelling and Design. Englewood Cliffs,
N.J.: Prentice Hall 1991

[SzOm93] Szypersky, C.; Omohundro, S.; Murer, S.: Engineering a Programming Language:

70

The Type and Class System of Sather. International Computer Science Institute
Tech Rep. Tr-93-064, Berkeley, Ca. 1993

[WaNe95] Waldén, K.; Nerson, J.-M.: Seamless Object-Oriented Software Architecture:
Analysis and Design of Reliable Systems. Hemel Hempstead: Prentice Hall 1995

