
ULRICH FRANK

SÖREN HALTER

ENHANCING OBJECT-ORIENTED
SOFTWARE DEVELOPMENT WITH

DELEGATION

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 2

Januar 1997

ULRICH FRANK

SÖREN HALTER

ENHANCING OBJECT-ORIENTED
SOFTWARE DEVELOPMENT WITH

DELEGATION

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 2

Januar 1997

Die Arbeitsberichte des Instituts für Wirtschaftsinfor-
matik dienen der Darstellung vorläufiger Ergebnisse,
die i.d.R. noch für spätere Veröffentlichungen überar-
beitet werden. Die Autoren sind deshalb für kritische
Hinweise dankbar.

The "Arbeitsberichte des Instituts für Wirtschaftsin-
formatik" comprise preliminary results which will
usually be revised for subsequent publications. Criti-
cal comments would be appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der Über-
setzung, des Nachdruckes, des Vortrags, der Entnah-
me von Abbildungen und Tabellen - auch bei nur
auszugsweiser Verwertung.

All rights reserved. No part of this report may be re-
produced by any means, or translated.

Arbeitsberichte des Instituts für
Wirtschaftsinformatik
Herausgegeben von / Edited by:

Prof. Dr. Ulrich Frank
Prof. Dr. J. Felix Hampe
Prof. Dr. Stefan Klein

Bezugsquelle / Source of Supply:

Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
56075 Koblenz

Tel.: 0261-9119-480
Fax: 0261-9119-487
Email: iwi@uni-koblenz.de
WWW: http://www.uni-koblenz.de/~iwi

Anschrift der Verfasser/
Address of the authors:

Prof. Dr. Ulrich Frank
Dipl. Inf. Sören Halter
Institut für Wirtschaftsinformatik
Universität Koblenz-Landau
Rheinau 1
D-56075 Koblenz

©IWI 1997

5

Abstract

In many application domains there are certain aspects that cannot be modelled in an adequate
way by using generalisation or common associations (like interaction or aggregation). In those
cases delegation often proves to fill this conceptual gap. While delegation has been an impor-
tant concept in different areas of computer science (mainly within AI) for long, it is not explic-
itly offered by any of the major object-oriented modelling methods. The following report will
introduce a concept of delegation as part of an object-oriented modelling method. First we will
analyse why both inheritance and common associations sometimes fail to model certain as-
pects of the real world. In order to foster the appropriate use of delegation we provide a number
of examples together with a checklist. While delegation is primarily a modelling concept it is
desirable to have it in place on the implementation level as well. Otherwise one has to deal with
the impacts of a semantic gap between model and code. In order to avoid such a gap we suggest
a modification of Smalltalk that allows to use delegation in a rather transparent way. Finally
delegation is documented as a design pattern.

6

1. Motivation

Within various projects we found that often neither inheritance nor commonly used associa-
tions (like interaction or aggregation) seemed to be appropriate concepts to model certain as-
pects of the real world. Instead delegation proved to fill this conceptual gap in many cases. Del-
egation has been an important concept in different areas of computer science (mainly within
AI). In various publications on object-oriented software development delegation is mentioned
as well ([Rum93], [GoRu95], [KaSc96], [Lie86], [BaDo96], [Scio89], [IBM94]). However,
none of the major object-oriented modelling methods (such as [Boo94], [Jac92], [Rum93]) in-
cludes delegation explicitly as a concept of its own. We presume that this is mainly for two
reasons: Overestimation of the expressive power provided by inheritance, and the fact that
most object-oriented programming languages do not allow for a convenient and safe imple-
mentation of delegation. With this report we will focus on both aspects. We will first analyse
the conceptual shortcomings of both inheritance and common associations. Then we will in-
troduce delegation as a concept for object-oriented modelling. Furthermore we will demon-
strate how to enhance Smalltalk in order to support delegation on the implementation level as
well. On our experience delegation is a rather valuable modelling concept that may help to
make a model more comprehensive and that fosters a system’s flexibility and maintainability
at the same time. However, in order to use it in an adequate way, it is necessary to consider its
pitfalls as well.

2. Limits of Inheritance

Without any doubt inheritance is an outstanding feature of object-oriented design. Not only
that generalization and specialization foster maintainability and reusability, furthermore the "is
a" relationship also allows for an intuitive and natural way to describe the real world. However,
in some cases inheritance, although applied in an intuitive way, can result in inappropriate con-
cepts. Consider the following example: In order to design an information system for a univer-
sity you need objects to represent students, research assistants, professors, etc. Since they share
common features like name, date of birth, sex, etc. you would introduce person as a generali-
zation - resulting in rather natural concepts: a student is a person, a professor is a person, etc.
Then you find out that you need objects to represent programmers, lecturers, administrators,
etc. Again inheritance seems to be the right choice: Apparently programmers, lecturers, and
administrators happen to be persons.

However, students as well as research assistants or professors may also be programmers - or
even programmers and lecturers at the same time. Single inheritance does not allow to express
those semantic relationships. But what about multiple inheritance? Redesigning our small ex-
ample using multiple inheritance would result in the generalization hierarchy presented in
fig. 1.

7

The classes defined in this hierarchy would in principle allow to express the combinations of
responsibilities mentioned above. Unfortunately it results in concepts you would hardly con-
sider as a natural way of modelling the world - like "teaching and programming research as-
sistant". However, even more important is the fact that inheritance - no matter whether it is sin-
gle or multiple - will lead to misconceptions that jeopardize a system’s maintainability and in-
tegrity. Think of a person that may be regarded as a programmer in one context, as a student
in another context. With most object-oriented programming languages inheritance is specified
in a way that, in our case, would result in instantiating objects from different classes. Hence
the same person would be represented by different objects. It is hardly acceptable to add this
sort of redundancy.

Our small example shows that using inheritance may result in inadequate models, although
every single "is a"-relationship seems to be appropriate. This rather confusing phenomenon is
caused both by the ambiguity of "is a" and the implementation of inheritance in common ob-
ject-oriented programming languages. Natural language often does not explicitly differentiate
between a concept and its instances: We say "a cat is a predator", no matter if we talk about a
specific animal or the genus. This is different with programming languages. In most languages
we know "is a" is related to a set of features a class shares with its subclasses. An instance,
however, usually is of one and only one class. In other words: Within object-oriented program-
ming languages an instance of the class Cat is (usually) not an instance of the superclass Pred-
ator.

Beside redundancy lack of flexibility is another shortcoming of inheritance. When we talk
about a domain like the one outlined above we obviously use abstractions that depend on the
current context we are in. Sometimes we are interested in a person being a lecturer, and we do
not care whether he is able to write a program or not, in another context we may regard the

Person

Professor

Lecturer

Programmer

Administrator

Student

Research
Assistant

Programming
Student

Programming
Research Assistant

Student-
Administrator

Teaching
Research Assistant

Programming
Student-Administrator

Teaching and program-
ming Research Assist-

ent

is a

Fig. 1: Concepts resulting from multiple inheritance

8

same person as a system administrator. Inheritance however does not allow to express chang-
ing contexts that may apply during the lifetime of objects. In other words: Generalization re-
quires to "freeze" certain abstractions before having instantiated a single object while we
sometimes need concepts that allow to change abstractions after objects have been instantiated.

3. Alternative Modelling Concepts

It is surprising that the problem we have discussed so far is hard to find in publications on ob-
ject-oriented modelling. Some of the rare examples are [IBM94] and [Rum93].

3.1 Interaction

[IBM94] outlines the example of on object model for an auction. Among the classes the au-
thors identify are Person, Auctioneer, Bidder, and Seller. They explicitly advise against the use
of inheritance: "This is because it is possible for the same person to be a bidder, an auctioneer,
and a seller." ([IBM94], p. 140). Instead they use an "interaction"-association, indicating that
- for instance - an instance of the class Bidder uses an instance of the class Person. Fig. 3 shows
how to model our example domain with interaction associations. This approach helps to avoid
redundancy, and adds flexibility to our model, as well. However, it has one severe disadvan-
tage: By treating those special associations like any other interaction association we complete-
ly neglect the semantics that is characteristic for certain associations in the real world. In other
words: We would know more about our domain than we could express in our model - although
this knowledge would be relevant for system implementation.

Professor

Lecturer

Programmer

Administrator

Student

Organisation

Person

Fig. 2: Modeling the Example with Interaction Associationsinteraction

attends

uses

1,1

uses

uses

uses

uses

0,1

1,1 0,1

1,1 0,1

1,1 0,1

1,1 0,1

0,* 0,*

uses

0,* 1,1

9

3.2 Aggregation

Rumbaugh et al. suggest the use of "delegation" which they define as "aggregation of roles"
([Rum93], p. 67). In our example domain they would regard a person as an aggregation of his
appearances - we could also say: his roles - in various contexts (see fig. 4). Firesmith et al. only
briefly mention that aggregation could serve to provide some sort of delegation: "... the parts
are visible to the aggregate and the aggregate can therefore delegate some of its responsibilities
to its parts ..." ([FiHe96], p. 76.

Aggregation does not suffer from the problems we encountered for inheritance. Like in any
other approach the essential features of a person are specified in the class Person. Furthermore
the features of a specific person (like his name, sex, etc.) are stored only within an instance of
this class. Other features that may be relevant in certain contexts (like features of a student or
a lecturer) are stored in roles which would be objects that were part of an instance of the class
Person. Those objects would not need to include any states that are managed by instances of
the class Person. Hence, redundancy could be avoided. However, aggregation is certainly not
a satisfactory solution. This is for two reasons:

• There is a conflict with the common notion of aggregation. The semantics of aggregation is
a delicate subject. None of the well known methodologies for object-oriented design (like
[Rum93], [Boo94], [Jaco92], [BoRu96]) provides a sound definition. Nevertheless aggre-
gation usually implies a notion of "containment" or even "physical containment". We doubt
that it is common sense to regard a role as a contained part of a person.

• Treating roles like any other aggregated parts fails to express the special semantics we usu-
ally associate with roles. While we expect a person that performs a certain role (like a stu-
dent) to still act like a person, this is certainly not the default for aggregates: You do not
expect a wheel to act like a car. So similar to interaction aggregation would force us to ab-

Professor

Lecturer

Programmer

Administrator

Student

Organisation

Person

aggregation

Fig. 3: Modeling the Example with Aggregationinteraction

attends

contains

1,1

contains

contains

contains

contains

0,1

1,1 0,1

1,1 0,1

1,1 0,1

1,1 0,1

0,* 0,*

contains

0,* 1,1

10

stract from relevant semantics.

We can summarize that by no means aggregation provides a natural conceptualization of our
example domain. Instead we find it to be a rather bizarre abstraction. What we are looking for
is a special association that allows to express the semantics we have identified. For instance:
This association should imply that an object of the class Lecturer would behave like an object
of the class Person. In order to avoid the confusion resulting from the ambiguity of "is a" we
suggest to use other denotations to characterize this sort of association. Instead of stating "a
programmer is a person" we would rather say "a programmer represents a person" (or "a person
acts as a programmer"). A programmer would than be regarded as a role. Different from inher-
itance a particular instance of the class Person would propagate its state and behaviour to an
instance of the (role-) class Programmer.

4. Delegation

Those authors who discuss delegation usually do not provide a precise definition. There are
two different perspectives on the subject which are not always differentiated: an implementa-
tion or run-time point of view, and a conceptual point of view. On the implementation level
there is a remarkable amount of work on languages which feature delegation instead of inher-
itance. In his classification of object-centered programming languages Wegner calls languag-
es, which allow for inheritance, object-based, while languages that support delegation instead
are characterized by "classless objects with delegation" ([Weg87]). Different from typical,
class-based object-oriented languages classless languages - like Self - do not include the con-
cept of a class. Instead every single object is being programmed directly. To take advantage of
structural similarities an object can be created as a copy of an existing one. Afterwards both
its state and behaviour may be changed. Classless programming languages are sometimes
called delegation based, while objects within these languages are called prototypical objects
([Lie86], [Smi95]). For a detailed analysis of delegation based languages see [Mal95].

In most cases delegation seems to be used with a programmer’s perspective in mind: An object
that receives a message which is not included in its own protocol delegates this message to an-
other object. Goldberg and Rubin provide a typical characterization for this point of view:
"When one object sends a message to a second object to fulfil one of its responsibilities. Del-
egation is an alternative to inheritance for sharing the behaviour of objects." ([GoRu95], p.
507) On a conceptual level, however, this point of view seems to be misleading: We would
hardly say that a programmer delegates to a person when he is asked his name. Instead we
would rather say that a person delegates his responsibilities to roles that may represent him de-
pending on the context. Not only that implementation and conceptual level are usually not
clearly differentiated. Furthermore there are alternative terms: Sciore uses "object specialisa-
tion" [Scio89] in order to express that a "specialized" object "inherits" behaviour from another
object it can delegate messages to. Within the programming language Self the object a message
can be delegated to is called "parent object" [SmUn95]. Kappel und Schrefl introduce an asso-
ciation that they call "roleOf" ([KaSc96], pp. 32). Among other things they characterize a "ro-
leOf"-association by the notion of "Instanzvererbung" ("instance level inheritance").

4.1 Semantics

Since our emphasis is definitely on the conceptual level we prefer to speak of a responsibility
delegated from a "delegator" to a "delegate". In order to avoid the ambiguity that might be

11

caused by the fact that the term delegation is sometimes used in the opposite direction (see fig.
4) we considered to speak of "actor" and "role" instead. However, we were not satisfied with
"actor": Not only that it is used in various different ways, furthermore it does not exactly match
what a delegator in our context is meant to be. A delegator does not have to be an "acting" ob-
ject. This is different with "role". While it is also used in object-oriented modelling with dif-
ferent semantics (a role usually serves as an annotation that characterizes the function of an
object participating in an association), it is very well suited to describe the function of a dele-
gate in a delegation association. Therefore we decided to stay with "role" and to use "role fill-
er" instead of "actor".

We define delegation as a special association with the following general characteristics:

1. It is a binary association with one object (the "role" or "role object") that provides trans-
parent access to the state and behaviour of another (not the same) object (the "role filler"
or "role filler object").

2. The role object not only includes the role filler object’s interface (as it would be with
inheritance, too) but also represents the particular role filler’s properties. In other words:
It allows for transparent access to the role filler’s services and state. This is very much
like in real life: You would hardly ask a programmer for the person he is assigned to in
order to then ask this person for his name. Instead you would directly ask the programmer
for his name. In case a role filler object includes a service that is already included in a role
object’s native interface the role object will not dispatch the message to the role filler
object. Instead the corresponding method of the role object is executed.

3. Inheritance and delegation: Both, the responsibilities of a role filler and a role class are by
default inherited to their respective subclasses.

conceptual level

implementation level

delegates

responsibility
(i.e. for
programming)

Programmer

level
•

experience
level

•

delegates

message (i.e.
"lastname")

Fig. 4: Context dependent meaning of delegation

Programmer
Person

Person

lastname
•

lastname
firstname

•

12

Furthermore we propose a number of constraints:

#1 Only classes that are kind of a special role class or a special role filler class can be used to
serve as roles or role fillers within a delegation association. This is for two reasons: Not
any object is conceptually suited to serve as a role or a role filler respectively. Further-
more the special semantics of both classes will require certain extensions on the imple-
mentation level (see below).

#2 A role filler may in general have none or many roles. Within a particular delegation the
cardinality of roles can be specified within this range. A role filler may have more than
one role of the same class. For instance: An object of the class Person may be associated
with more than one instance of the class Programmer at the same time - a programmer
with Smalltalk experience and another one with "C++" experience (that does not mean,
however, that we would recommend to always use two instances for modelling this situa-
tion). For another example see fig. 11.

#3 At a point in time a role must not be associated with more than one role filler. While it is
obvious why a role should not be associated with more than one role filler of a particular
class, one may find real world situations where it could be helpful to have one role asso-
ciated with more than one role filler - of different classes - at the same time. For instance:
If you need a class that represents students who are employed in a research project you
might consider its instances as roles both of Employee- and Student-role fillers. We could
speak of "multiple" delegation in this case. Nevertheless there are two reasons why we
decided not to allow for it. First we suppose that "multiple" delegation usually will lead to
vague and thereby misleading concepts. Furthermore additional strategies would be
required to deal with naming conflicts.

To further specify the concept of delegation we will first discuss a number of possible con-
straints - which may be more or less adequate depending on the general attitude towards soft-
ware engineering requirements. Similar to other modelling concepts (such as inheritance) there
is a trade-off between flexibility and integrity. There are two main criteria that illustrate this
conflict:

a) Number of role filler classes corresponding to one role class

• Pro integrity: Instances of a particular role class may be assigned only to an instance of one
corresponding role filler class (and its subclasses respectively). This constraint fosters sys-
tem integrity by allowing for statically checking an object model’s consistency. In case a
role class had more than one corresponding role filler class, it would hardly be possible to
check whether a particular service is available during run-time: May be, the role object is
associated with the required role filler object when it is needed, may be not ... Furthermore
this constraint helps to protect people who deal with an object model against confusion.
Note that it does not exclude to move a role during its lifetime from one role filler to anoth-
er.

• Pro flexibility: Instances of a particular role class may be assigned to instances of more than
one corresponding role filler class, but only to one instance at a time. This is rather common
in the real world: Sometimes a role or a functionality respectively can be fulfilled by differ-
ent role fillers (like a person or an institution).

13

b) Multi-level delegation

• Pro integrity: A role object must not act as a role filler object. If a role could be a role filler
at the same time a model would get much more complex: A multi level delegation hierarchy
would interfere with a multi level generalisation hierarchy. Such a model would be difficult
to understand and hereby more difficult to maintain. However, with the first pro integrity
constraint in place it would be possible to statically check whether a particular service was
available with a role object during run-time - no matter whether the second constraint is val-
id or not.

• Pro flexibility: A role object may act as a role filler object, too. There are real world do-
mains that suggest the use of multi-level delegation. For instance: A dean can be regarded
as a role of a professor who in turn is a role of a person.

The decision for a specific definition of delegation certainly depends on individual prefer-
ences. We suggest the following compromise - resulting in two further constraints:

#4 The number of corresponding role filler classes is restricted to one.

If you allow instances of a particular role class to be assigned to instances of more than one
corresponding role filler class the whole idea of transparently accessing a role filler’s protocol
through a role is jeopardized: Transparent access does not help much as long as you do not
know which services are available. On the other hand there are relevant situations where a
role can be assigned to role fillers of different classes. For instance: A customer may be
regarded as a role of both a company or a person. The concept of delegation we have decided
for does not allow for multiple role filler classes. That does not necessarily exclude to have a
role associated with instances of different role filler classes - provided they are all subclasses
of one common superclass. It may be helpful to define an abstract superclass for this purpose,
thereby providing a minimum common protocol for all possible role fillers (see example 4.2
e) below).

#5 Multi-level delegation is permitted. However, cyclic associations are not permitted. In
other words: By no means may a role object act as a role filler of itself.

In case the number of a role’s corresponding role filler classes is restricted to one it seems
appropriate to allow a role object to act as a role filler object: It may increase a model’s com-
plexity but is no serious threat to integrity (see above). For this reason it is not excluded by
our definition of delegation.

Since we are focusing a conceptual rather than an implementation level so far we can neglect
the question how the references from a role object to its role filler objects and vice versa are
managed. The concept of delegation we propose can be summarized as follows:

Basic properties:

Delegation is a binary association with a role object and a role filler object.

The role object behaves like its role filler object by providing the role filler’s interface and
allowing for transparent access to the role filler’s properties.

Constraints:

#1 Only classes that are kind of a special role class can be used to serve as roles within a del-
egation association.

14

#2 A role filler may in general have none or many roles of one class. The default is none or
one.

#3 At a point in time a role must not be associated with more than one role filler.

#4 The number of corresponding role filler classes is restricted to one.

#5 Multi-level delegation is permitted.

In order to support modelling with delegation we enhanced our own object-oriented model-
ling method called MEMO ("Multi Perspective Enterprise Modelling", Frank 1994) with a
special notation for expressing delegation (see fig. 5). Note that there usually is no need to
explicitly assign cardinalities. There has to be exactly one role filler object (which is an
instance of Person in our example) by definition. The default for associated role objects is
min: 0, max: 1. (s. constraint #2). Only if the default is not acceptable you would explicitly
assign a deviant cardinality. Each delegation association is assigned a name. The connecting
arc defines the direction in which to read the association. In other words: If you regard the
association as a predicate the arc starts at the subject and points to the object. The delegation
symbol on the other hand serves to identify the role and the role filler: The role object is the
one that is next to the half circle on top of the rectangle.

4.2 Some Examples

The following examples serve to illustrate typical cases for delegation. At the same time some
of them point to particular problems that may be accompanied by delegation.

Professor

Lecturer

Programmer

Administrator

Student

Person

delegation

Fig. 5: Representing delegation in the MEMO methodinteraction

attends
1, * 0, *

acts as

acts as

acts as

acts as

acts as

15

a) Managing lectures at a university

Suppose there is a set of lectures defined within the curriculum. A lecture is characterized by
a title, a table of content, an abstract, and maybe associations to other lectures. By default a
certain lecture (like "Introduction to Operations Research") is offered by exactly one professor.
Furthermore we have to deal with concrete lectures offered in a particular semester. While
these concrete lectures are characterized by the same properties as the corresponding "essen-
tial" lectures mentioned before (note that natural language hardly allows to avoid ambiguity
here) they have to be assigned additional information: time, location, maybe students ... By
modelling concrete lectures as roles of essential lectures we would accomplish exactly what is
required in this case. If it may happen that the professor assigned by default can be substituted
with somebody else for a concrete lecture we need to add an association between a concrete
lecture and a professor.

b) "Class Migration"

An insurance company wants to keep track of future customers by storing information about
its current customers’ children. Once the children turn 18 they are to be offered insurance serv-
ices specially designed for young people. If they eventually become customers there is need to
update the company’s database. In a straightforward approach one would probably delete the
particular instance of the class Dependant and instantiate a new instance of InsuredPerson.
Afterwards you would have to initialize this instance using the relevant parts of the Dependant
instance. However, not only that this approach is somewhat cumbersome, it also jeopardizes
system integrity (there may be numerous references pointing to the Dependant instance). A
more ambitious approach would aim at changing an object’s class - from Dependant to In-
suredPerson in our case. Such an approach, usually referred to as "Class Migration" (see for
instance [Wier95]), is rather confusing (what does it mean anyway when something "changes"
the concept it is defined by?). Furthermore it will usually be a remarkable effort to provide for
a satisfactory implementation. This is different with delegation. We could regard both an in-
stance of InsuredPerson and an instance of Dependant as roles of an instance of Person (see
fig. 7). In this case we would simply add a new role by creating an instance of InsuredPerson.
The default cardinality for roles is 0, 1. Since it is not overwritten in our example the instance
of Dependant would now have to be deleted. This would not affect relationships between cus-

ProfessorStudent

EssentialLecture

title
tableOfContent
abstract
timesOffered

Fig. 6: Essential and concrete lectures

ConcreteLecture

day
startTime
endTime
location

1, * 0, *

0, *1, 1
attends

inChargeOf

represents

16

tomers as long as those are modelled as associations between Person objects.

c) "Multiple" role filler classes

A retail company serves both individuals and companies. Some of those companies act as sup-
pliers as well. If we first look at the second aspect it would be a good idea to regard a customer
as a role of a company. Supplier could then be another role a company may play. However, an
individual may be a customer as well. Treating both a company and a person as role filler of
the role customer is not permitted without further consideration: It would not be compliant
with constraint #4. On the other hand it may turn out that introducing two different kinds of
customers without a common superclass will add redundancy, since there are numerous as-
pects of customers that do not require to check whether they are individuals or companies. In
order to take advantage of the benefits offered by delegation there is only one chance: Intro-
ducing a common superclass of the role filler classes Person and Company. This class may be
an abstract class, for instance AbstractPerson. It should offer essential features of both Person
and Company - such as name and address. No matter whether a particular instance of Custom-
er is associated with a Company or a Person object it would be able to answer to the protocol
defined in AbstractPerson. Note that the default cardinality of roles again prevents a Customer
object being associated with a Company object and a Person object at the same time. However,
this example should make clear that delegation is not always the best choice. Only if it is ac-
ceptable to introduce a common superclass of role filler class candidates (that means if there
is at least a few common features) delegation is an option.

InsuredPerson

Person

Fig. 7: Avoiding class migration through delegation

0, 2 0, *

RelevantPerson

Dependant

acts as

parent of

abstract class

C

C An instance must not be associated with itself.

Company

Customer

Fig. 8: "Multiple" Delegation through generalisation

Person

acts as

abstract class

Abstract Person
name
adress

Supplier acts as

17

d) Naming issues

Within an address management application you want to be able to store both a person’s home
address and his business address. The business address could be linked to or included in an in-
stance of the class Employee while the home address could be directly linked to an instance of
class Person. Fig. 9 shows a simplified example where we only consider a person’s telephone
numbers. There are two options for naming the services providing access to the home and the
office phone numbers respectively. If there is no need to give access to an employee’s home
phone number through an Employee object (or you even want to avoid it), it is a good idea to
use the same name for both services. In this case a message like "phoneNumber" sent to an
Employee object would only return the phone number(s) assigned to the employee. If it is im-
portant to deliver both, an employee’s office phone number and his home phone number, one
should use appropriate names - like "officePhone".

e) Multi level delegation vs. inheritance

The dean of a university faculty has to be a professor and an employee as well. At first sight it
seems to be satisfactory to model dean, professor, and employee as roles of a person. However,
such a model would lack relevant semantics, since it would not tell that somebody can only
become a dean, if he is a professor. Specializing dean from professor via inheritance is usually
no convincing option: With his role as a professor somebody may have a different room, sec-
retary, and phone number than with his role as a dean. For this reason we would need two in-
stances - one representing a professor, the other representing a dean. In order to express the
fact, that a dean has to be a professor, dean would be modelled as a role of professor. What
about the relationship between professor and employee? Whether one should use inheritance
here or delegation again (which would result in "multi level delegation") can hardly be an-
swered in a general way. Modelling professor as an employee’s role would certainly be more
versatile: You could delete the role object without deleting the corresponding Employee ob-
ject. However, if you wanted to stress that a professor will be a professor as long and only as
long as he is an employee, inheritance would be the preferable option: After deleting a Profes-
sor object its employee features would be deleted as well. On the other hand Professor would
inherit all other possible roles of Employee. In the end the option to decide for depends on your
notion of a professor. In case you consider a professor a lifetime academic position, regardless
of a corresponding occupation, delegation would definitely be a better choice. However, then
you would have to model professor as a role of a person, not of an employee - thereby losing

Fig. 9: Delegation and naming conventions

Person

firstname
lastname
phoneNumber

phoneNumber
•

Employee

monthlySalary
socialSecurityNo
phoneNumber

officePhone
•

acts as

18

the information that by all means a dean has to be an employee. It might be an acceptable com-
promise to differentiate between an employed professor, an emeritus, and maybe a visiting
professor (see fig. 10). Note, however, that this compromise would lack a common abstraction
from the three types of professors: If you made Professor a subclass of AbstractProfessor, it
would inherit to be a role of Person - thereby excluding that it could be a role of Employee
(multiple delegation is not permitted by definition, see constraint #4). At the same time Pro-
fessor could not be a subclass of Employee - as long as you do not allow for multiple inherit-
ance.

f) Role abstraction

If you look at example d) it may be relevant for a Person object to deliver all telephone num-
bers the particular person can be reached through - no matter which role they are assigned to.
In other words: There should be a service like "allPhoneNumbers" that delivers all these num-
bers. On the implementation level this will require to make sure, that a Person object holds
references to all its role objects. The implementation of delegation we will introduce below
will provide these references by default. On the conceptual level you have to take into account
that in this case you need to abstract from the fact that information, that might be associated
with a person, is actually stored in role objects. Delegation provides an abstraction in the op-
posite direction. The only chance to foster role abstraction is by introducing naming conven-
tions. First you would check, which of the role filler’s services might be used with abstractions
in mind that require to collect the corresponding information from all its roles. These services
could then be implemented in all associated role classes - for instance a service "phoneNum-
ber". In case it is appropriate this could be accomplished by defining a common (abstract) su-
perclass. In order to allow for transparently accessing a Person object’s phone numbers it
would be necessary to implement additional access services with different names (for instance
"homephone", see fig. 11).

Emeritus

Person

Fig. 10: Combining multi level delegation and inheritance

VisitingProf

Employee

AbstractProfessor

Professor Dean

Faculty inChargeOf
1,11, 1

acts as

acts as acts as

C A Person may act as an
AbstractProfessor only if he
does not act as a Professor
at the same time.

C

C

19

4.3 Guidelines for the Use of Delegation

While delegation can be a valuable alternative to inheritance it is definitely not suited to re-
place it in general. In order to support the decision between inheritance and delegation Rum-
baugh et al. suggest to focus on the "essence" of inheritance: "Inheritance should only be used
when the generalization relationship is semantically valid. Inheritance means that each in-
stance of a subclass truly is an instance of the superclass; thus all operations and attributes of
the superclass must uniformly apply to the subclass." ([Rum93], p. 284) We find this criterion
rather confusing. While one could argue whether it is a necessary condition for inheritance (see
5), it is certainly not relevant for differentiating between inheritance and delegation. Applying
Rumbaugh et al.’s suggestion to our first example would for instance result in specifying the
class Student as a subclass of the class Person - which is exactly what we wanted to avoid.
While we do not agree to the rule of thumb Rumbaugh et al. suggest, we do not agree with Ver-
yard either: "There are no fixed guidelines when to use subtyping and when to use role entities;
it is largely a matter of taste and style." ([Ver92], p. 54). Whether or not to apply delegation
should always be based on a thorough analysis of the specific domain. We suggest a few guide-
lines that may help with this analysis:

• Do not get confused by the ambiguity of "is a". Ask yourself whether a relationship
between two concepts could also be called "represents" or "acts as" respectively. If this is
the case you have found a delegation candidate.

• Delegation is closely related to the common sense concept of a role. The existence of a

Fig. 11: Providing for role abstraction using an abstract role superclass

Person

firstname
lastname
phoneNumber

homephone
allPhoneNumbers

•

PersonRole

phoneNumber
•

phoneNumber
•

acts as

Employee

•

officePhone
•

Committee
Chairman

•

chairmanPhone
•

ProjectManager

•

managerPhone
•

0, *

20

role may be indicated by notions such as "task", "job", "serves as", "works as", etc.
Therefore you should look for corresponding words within available descriptions of a
domain.

• A generalisation that does not necessarily hold for the entire life time of the system to be
designed could be a case for delegation. For instance: If a professor does not have to be a
an employee by all means, delegation will be a better choice. (In this case however, the
lack of multiple delegation would imply to model Professor as a role of Person - thereby
loosing the semantics that it might be a role of Employee as well. See 4.2, e)

• Whenever you encounter the existence of different views on an object, or different con-
texts an object may be assigned to, it is a good idea to check, whether these views or con-
texts can be related to roles or responsibilities of the object in a natural way. In this case
delegation might be a useful option.

• Some real world entities are likely candidates for becoming role filler objects: persons,
organizations, and versatile machines. Assigning the objects of a preliminary object
model to such categories may help with identifying delegation associations.

There are roles which may exclude each other in certain domains. For instance: It may be that
a person who acts as a student cannot act as a professor in the same domain. Such potential
conflicts can be detected during analysis simply by generating all possible combinations and
checking each one for plausibility. In case you detect a conflict an appropriate constraint
should be added to the model. Multi level delegation should be used with specific care. While
it may provide a more natural abstraction of certain real world aspects, it can make it more dif-
ficult to debug and maintain code. In general one should beware of exaggerating the use of del-
egation: "Delegation is a good design choice only when it simplifies more than it complicates."
([Gam95], p. 21).

4.4 Enhancing Smalltalk with Delegation

Delegation is not only a valuable modelling concept from an academic point of view. Kathuria/
Subramaniam, who suggest a similar concept that they call "assimilation", state: "As practi-
tioners we have a strong need for a concept like assimilation." ([KaSu96], p. 39). The concep-
tual advantages offered by delegation recommend to use it even if you do not have a program-
ming language that supports it. Nevertheless, it is without doubt more attractive to use, if there
is no semantic gap between object model and code. However, among the more popular object-
oriented programming languages only Self features a concept that is similar to delegation
([SmUn95]) - instead of inheritance (see 4). In order to use delegation with programming lan-
guages which feature inheritance, it would be necessary to extend them with a corresponding
mechanism. In the following sections we will demonstrate how such an extension can be ac-
complished. The implementation we introduce was done in VisualWorks©-Smalltalk. How-
ever, it can be easily adapted to other Smalltalk dialects.

4.4.1 Design

Constraint #1 (see 4.1) suggests not to allow arbitrary objects to serve as a role or as a role fill-
er. In order to enforce this constraint we introduce two abstract classes, Role and RoleFiller.
Any domain level role or role filler has to be explicitly defined as a subclass of one of those

21

abstract classes. Since we allow for multi level delegation (constraint #5), a role may act as a
role filler, too. This aspect can be expressed by defining Role as a subclass of RoleFiller - since
RoleFiller does not include any features that would corrupt a role’s behaviour (see fig. 11).

In order to describe the behaviour of these classes in more detail, we will consider a number
of design/implementation issues.

Transparent Message Dispatch

The essential behaviour to be implemented for roles is a transparent dispatch of certain mes-
sages to its role filler: Whenever a role object receives a message which is not implemented by
a corresponding method neither in the role’s class nor in any of its superclasses, the message
should be forwarded to the role filler. With statically typed languages such as Eiffel it is nec-
essary to define the messages to be dispatched at compile time. This could be accomplished by
copying the interface of the role filler to its roles and by explicitly coding the dispatch for each
message. This approach, however, is hardly satisfactory. Not only that code will be more dif-
ficult to understand (role objects will contain dispatch-messages that actually do not belong to
their own responsibilities), furthermore software maintenance can be expected to be extremely
cumbersome (whenever the interface of a role is modified, the interfaces of all of its roles have
to be modified, too) - thereby endangering a system’s integrity to an unacceptable extent.

Languages that feature dynamic typing, such as Smalltalk or Objective-C, are in principle bet-
ter suited to be extended with delegation. The question that has to be dealt with at first place
is, how to provide for a mechanism that allows for transparently dispatching messages from a
role to its role filler. If a message is sent to a role object that does not contain this message in
its protocol (which includes all the services inherited from its superclasses), this would nor-
mally cause an exception to be raised. Instead delegation would require to dispatch such a mes-
sage to the associated role filler object. Hence it would be required to prevent the exception to
be raised and to implement a message dispatch instead. Fortunately the Smalltalk code that
raises the exception can be accessed and modified. In Smalltalk, an object that receives a mes-
sage, it does not understand (in other words: the method lookup failed), will call its own meth-
od doesNotUnderstand: aMessage with the failed message (aMessage) as a parameter. The
doesNotUnderstand:-method is implemented in Object (the superclass of all other classes in
Smalltalk). The basic idea now is to replace the original implementation of this method with a
method that dispatches the message to an associated role filler object (see fig. 12 and 4.4.2).

0,* 1,1

RoleFillerRole

Fig. 11:Preliminary object model for a delegation mechanism

roleOf

C

C Cyclic associations have to be avoided.

Object

22

Referential Integrity

Within a delegation association both, a RoleFiller object, and a Role object should know each
other. That suggests to store appropriate references to each other within a role filler and its
roles. Implementing corresponding set methods, however, requires to prevent inconsistent
states resulting from only partially set associations: Whenever a role filler adds a role to its set
of roles, it should be made sure that the role in turn sets the role filler - et vice versa. This be-
haviour is implemented with the methods addRole: aRole in RoleFiller, and roleFiller: aRole
in Role (see 4.4.2).

Referential integrity is a requirement for delete operations, too. The methods removeRole:
aRole within RoleFiller, and roleFiller: aRoleFiller (where aRoleFiller would replace and there-
by delete the previous role filler) within Role make sure, that deleting a reference will always
include the deletion of its counterpart. Different from a Role object a RoleFiller object may
hold many of such references (note that a role may act as a role filler as well). For this reason
removing it (having it collected as garbage), requires to break all references to its roles. The
release method within RoleFiller provides this behaviour. Since a role may act as a role filler
as well, the release method implemented with Role first calls the release method implemented
with its superclass, and then removes the reference to the associated role filler. Notice, how-
ever, that this method has to be enhanced within subclasses, if those subclasses allow to estab-
lish additional references (which will usually be the case). Handling delegation associations
furthermore requires to enforce the constraint, that there must not be any cyclic associations.
This purpose is served by the method roleFiller: aRoleFiller, implemented with Role (see
4.4.2).

Meta Information

One of Smalltalk’s outstanding features is to provide meta information during runtime. Any
object, for instance, provides a method that delivers its class or its superclass. The method is-
KindOf: aClass allows to find out, if an object is a subclass of a certain class aClass - thereby
providing the behaviour (or, to be more precise: the interface) of this class. In order to check,
if a Role object provides the interface of another class, isKindOf: aClass is certainly not satis-
factory: A role provides transparent access not only to the interface of its superclasses but also
to the interface of its role filler. This is similar with the method respondsTo: aMessage, that
allows to find out, whether aMessage is included in an object’s (or any of its superclasses’)
interface. Since both the semantics of isKindOf: aClass and respondsTo: aMessage are well
known in the Smalltalk community, it is definitely no good idea, to replace them in Role with
deviant implementations. Instead we added two methods to Role. behavesLike: aClass first
calls isKindOf: aClass. If that call fails, it will send behavesLike: aClass to the associated
RoleFiller object. repliesTo: aMessage, proceeds in the same way, calling respondsTo: aMes-
sage instead (see 4.4.2). Checking the existence of a certain interface does not always imply
to know whether an object is a role. In order to avoid an additional check by calling isKindOf:
Role, the two methods added to Role could also be added to Object, where they would simply
call isKindOf: aClass or respondsTo: aMessage. Notice, however, that changing basic classes
always causes a price to be paid for configuration management.

Dependence Mechanism

Similar to the previous section this is a Smalltalk specific consideration, too. The dependence
mechanism allows to define an object as a dependant of another object. Whenever an object
changes its state, its dependants will be informed transparently. For a detailed description of

23

the dependence mechanism see ([Parc95], pp. 237, [Howa95], pp. 16). Introducing the delega-
tion concept adds further complexity to dependence associations. Consider, for example, an
object that expresses its interest in changes of a Programmer object, which in turn is a role of
a Person object. That object will only be notified if the Programmer object changes - although
the conceptual level would suggest an interest in the associated role filler as well, since a role
represents its role filler in a certain context. Often it would be desirable to have a Role object’s
dependants transparently notified about the associated RoleFiller object’s (which may involve
more than one object in the case of multi level delegation) changes as well. For this reason we
specialized two additional classes, RoleFillerModel and RoleModel, from RoleFiller and Role
respectively. These classes allow for transparent management (registering, notification) of de-
pendants - similar to the behaviour provided by the Smalltalk class Model. By adding two al-
ternative classes we leave it up to the user of the framework (see fig. 12) whether he wants to
use the dependence mechanism or not: In case it is required to notify a role’s dependants about
its role filler’s changes, you would specialise from RoleFillerModel and RoleModel, otherwise
you would use the framework by defining subclasses from RoleFiller and Role.

The Framework

The framework presented in fig. 12 is intended to be used by the so called "complete" strategy.
Different from the "use as is" strategy it requires the developer to add additional code - mainly
by specializing certain classes within the framework. We do not encourage to use the frame-
work in a "customise" fashion: The classes of the framework should not be modified - not only
because they define the essential semantics of delegation, but also to prevent maintenance
problems that may occur with upcoming releases of the framework. For a detailed discussion
of basic strategies to use frameworks see [CoPo95].

Fig. 12:The delegation framework and an example of how to use it via specialization.

C Cyclic associations have to be avoided.

0,* 1,1

RoleFillerRole

roleOf

C

RoleFillerModelRoleModel

Student
Person

Employee

24

 To make use of the framework you would simply specialise the concrete role filler from class
RoleFiller and the roles from class Role, or - if you want to take advantage of the dependence
mechanism - from class RoleFillerModel and RoleModel respectively. Going back to our ex-
ample shown in figure 3 class Person could be defined as a subclass of class RoleFiller and the
classes Professor, Student, Lecturer and Administrator could be subclasses of class Role (may-
be with an additional abstraction like PersonRole, as a superclass of Professor, Student, etc.).

4.4.2 Implementation

The following section describes the essential code of the delegation framework. The descrip-
tion is restricted to the classes Role and RoleFiller, since RoleModel and RoleFillerModel only
add behaviour that is well known from class Model. The complete implementation of the
framework together with a comprehensive example can be obtained via http://www.uni-
koblenz.de/~iwi/delegation.

Implementation of Class Role

The instance level protocols both of Role and of RoleFiller are shown in fig. 13. The methods
corresponding to the services printed in italic are listed below.

Fig. 12:Protocols of Role and RoleFiller

Role

roleFiller: aRoleFiller
roleFiller
roleName
roleFillers

doesNotUnderstand: aMessage

behavesLike: aClass
repliesTo: aMessageSelector

printOn: aStream

initialize
release

RoleFiller

addRole: aRole
removeRole: aRole
roles
rolesAs: aString
directRoles
roleFillers

behavesLike: aClass
repliesTo: aMessageSelector

initialize
release

pu
bl

ic

pu
bl

ic

isRoleAcceptable: aRoleOrNil
__addRole: aRole
__removeRole: aRole

p
ri

va
te

p
ri

va
te

isRoleFillerAcceptable:
aRoleFillerOrNil

__roleFiller: aRoleFillerOrNil

25

The class definition for RoleFiller:

Object subclass: #RoleFiller
instanceVariableNames: ’roles ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’DelegationConcept’

The class definition for Role:

RoleFiller subclass: #Role
instanceVariableNames: ’roleFiller ’
classVariableNames: ’’
poolDictionaries: ’’
category: ’DelegationConcept’

The original implementation of doesNotUnderstand: aMessage in class Object:

doesNotUnderstand: aMessage

"The default behaviour is to create a Notifier containing the
appropriate message and to allow the user to open a Debugger.
Subclasses can override this message in order to modify this behaviour."

| selectorString |
selectorString :=

Object errorSignal
handle: [:ex | ex returnWith: ’** unprintable selector **’]
do: [aMessage selector printString].

Object messageNotUnderstoodSignal
raiseRequestWith: aMessage
errorString: ’Message not understood: ’ , selectorString.

^self perform: aMessage selector withArguments: aMessage arguments

The replacement of that method within Role:

doesNotUnderstand: aMessage

"If the receiver does not understand the message aMessage propagate it to the receiver’s
roleFiller."

">>> Types: aMessage : Message"
">>> Returns: Object"

^self roleFiller
perform: aMessage selector
withArguments: aMessage arguments

26

The methods to get and set the role filler within Role:

roleFiller: aRoleFillerOrNil

"Set the receiver’s role filler to aRoleFillerOrNil. If the role filler of the receiver is not nil
break the existing reference prior to establishing the new one."

">>> Types: aRoleFillerOrNil : RoleFiller | nil"
">>> Exceptions:

Notification (The role filler <aRoleFillerOrNil> is not acceptable!)
Notification (The role <self> is not acceptable!’)"

"If the receiver’s current role filler is equal to aRoleFillerOrNil do nothing."

self roleFiller == aRoleFillerOrNil ifTrue: [^self].

"Test whether or not the role filler is acceptable for the receiver and the receiver is accept-
able for the role filler."

(self isRoleFillerAcceptable: aRoleFillerOrNil)
ifFalse: [self notify: ’The role filler ’, aRoleFillerOrNil printString, ’ is not acceptable!’.

^self].
(aRoleFillerOrNil isNil or: [aRoleFillerOrNil isRoleAcceptable: self])

ifFalse: [self notify: ’The role ’, self printString, ’ is not acceptable!’. ^self].

"Protected establish the reference from the receiver to the role filler and vice versa."

self __roleFiller: aRoleFillerOrNil.
(self roleFiller isNil) ifFalse: [self roleFiller __addRole: self].

roleFiller

"Return the receiver’s role filler."
">>> Returns: RoleFiller | nil"

^roleFiller

The implementation of the private methods for Role:

isRoleFillerAcceptable: aRoleFillerOrNil

"Returns true if aRoleFillerOrNil can be accepted as the receiver’s role filler, false other-
wise."

">>> Types: aRoleFillerOrNil : RoleFiller | nil"
">>> Returns: Boolean"

"If the argument is nil it can be accepted."

aRoleFillerOrNil isNil ifTrue: [^true].
"Don’t allow any cycles."

(aRoleFillerOrNil == self or: [(aRoleFillerOrNil roleFillers includes: self)])
 ifTrue: [^false].

27

"Check if aRoleFillerOrNil is kind of RoleFiller"

(aRoleFillerOrNil isKindOf: RoleFiller) ifFalse: [^false].
^true

__roleFiller: aRoleFillerOrNil

"Assign aRoleFillerOrNil as the receiver’s role filler in a quasi protected mode. If the receiv-
er’s role filler is not nil break the existing reference prior to establishing the new one."

">>> PROTECTED: RoleFiller"
">>> Types: aRoleFillerOrNil : RoleFiller | nil"

(self roleFiller isNil)
ifFalse: [self roleFiller __removeRole: self].

roleFiller := aRoleFillerOrNil.

The method for requesting meta information for Role:

behavesLike: aClass

"Returns whether or not the receiver behaves like aClass, i.e. answers the question wheth-
er or not the receiver or the receiver’s role filler is kind of aClass."

">>> Types: aClass : Class"
">>> Returns: Boolean"

^(self isKindOf: aClass) or: [self roleFiller behavesLike: aClass]

repliesTo: aMessageSelector

"Answer whether the method dictionary of the receiver’s class or the method dictionary of
the class of the receiver’s role filler contains aMessageSelector as a message selector."

">>> Types: aMessageSelector : Symbol"
">>> Returns: Boolean"

^(self class canUnderstand: aMessageSelector)
or: [self roleFiller repliesTo: aMessageSelector]

The methods to add, remove and retrieve roles within RoleFiller:

addRole: aRole

"Add aRole as one of the receiver’s roles."
">>> Types: aRole : Role"
">>> Exceptions:

Notification (The role <aRole> is either nil or not a role!)
Notification (The role filler <self> is not acceptable!)"

"Check if the association can be established from both sides."

(self isRoleAcceptable: aRole)
ifFalse: [self notify: ’The role ’, aRole printString, ’ is either nil or not a role!’. ^self].

(aRole isRoleFillerAcceptable: self)
ifFalse: [self notify: ’The role filler ’, self printString, ’ is not acceptable!’. ^self].

28

"Protected establish the association."

self __addRole: aRole.
aRole __roleFiller: self.

removeRole: aRole

"Remove aRole as one of the receiver’s roles. If the role is removed the association from
aRole to the receiver is also broken, but aRole isn’t released!!! (This must be done manually)"

>>> Types: aRole : Role"

(self __removeRole: aRole)
ifTrue: [aRole __roleFiller: nil]

directRoles

"Return all roles the receiver references directly through the instance variable roles."
">>> Returns: Set of Role"

^roles

roles

"Return a collection including all roles of the receiver. This includes also all roles of the re-
ceiver’s roles."

">>> Returns: Set of Role"

| set |
set := Set new.
set addAll: self directRoles.
self directRoles do: [:role | set addAll: role roles].

rolesAs: aString

"Return all roles that have class names matching aString - aString can include any wild-
cards."

">>> Types: aString : String"
">>> Returns: Set of Role"
">>> Example: If there are role classes Professor and Programmer the message <role fill-

er> rolesAs: ’Pro*’ will return instances of both (if any)."

^self roles select: [:role | (aString match: role class name asString)]

The implementation of the private methods for RoleFiller:

isRoleAcceptable: aRoleOrNil

"Return whether aRoleOrNil can be accepted as one of the receiver’s roles."
">>> Types: aRoleOrNil : Object"
">>> Returns: Boolean"

"nil is not allowed as role."

29

aRoleOrNil isNil ifTrue: [^false].
"Check if aRoleOrNil is kind of Role."

(aRoleOrNil isKindOf: Role) ifFalse: [^false].

__addRole: aRole

"Add aRole as one of the receiver’s roles in a quasi protected mode."
">>> PROTECTED: RoleFiller"
">>> Types: aRole : Role"
">>> Returns: Boolean"

^(self directRoles includes: aRole)
ifTrue: [false]
ifFalse: [self directRoles add: aRole. true].

__removeRole: aRole

"Remove aRole as one of the receiver’s roles in a quasi protected mode."
">>> PROTECTED: RoleFiller"
">>> Types: aRole : Role"
">>> Returns: Boolean"

^(self directRoles includes: aRole)
ifTrue: [self directRoles remove: aRole. true]
ifFalse: [^false]

4.5 Delegation as a Design Pattern

Finally we will present delegation as a design pattern. This did not happen because describing
delegation as a design pattern would provide relevant additional information. However, the
idea of design patterns, which can hardly be regarded as a concept of its own, can be helpful
for a number of reasons. First it provides a structure that helps to produce a systematic docu-
mentation of a particular concept. With design patterns gaining popularity an increasing
number of people is familiar with this sort of documentation. For this reason a design pattern
can help with understanding a concept and with comparing it to related concepts. The structure
we use is adapted from the one suggested by Gamma et al. [Gam95].

Pattern Name

"Delegation"

Also Known As

"object specialization", "instance level inheritance", "propagation"

Purpose

Delegation serves two purposes: During system design it allows to express a specific relation-
ship between objects, thereby enhancing an object model’s semantics. By enriching a pro-
gramming language with a corresponding concept the semantic gap between design and im-
plementation can be avoided.

Motivation

30

Sometimes an object of a certain class may have associated occurrences, which are only rele-
vant within specific contexts: For instance a person may act as an employee in one context, as
a customer in another context. Those occurrences are not only expected to behave like a per-
son, but also to provide transparent access to the person’s characteristics: You normally would
ask an employee for his name instead of addressing "his" person. This sort of relationship is
very similar to the relationship between a role filler and his roles. Inheritance does not allow
to model this relationship in an appropriate way (see 2). This is also the case for common as-
sociations on the instance level (see 3) Delegation is a concept that allows to model relation-
ships between roles and role fillers in a natural way. It is a binary association with one object
(the "role" or "role object") that provides transparent access to the state and behaviour of an-
other object (the "role filler" or "role filler object"). Another important difference from inher-
itance is to be seen in the fact that roles can be assigned to role fillers during run-time. For de-
tails see 4.1.

Applicability

see 4.3

Structure

see 4.4

Participants

In principle any class can be specialized from RoleFiller, Role, RoleFillerModel, or RoleModel.
However, in order to foster a domain model’s integrity it is recommended to decide in time
which classes are permitted to be role or role filler candidates (see 4.3).

Dynamics

Whenever a Role object receives a message that is not included in its own protocol, it will dis-
patch this message to its RoleFiller object. In case the RoleFiller object cannot answer this mes-
sage an appropriate message (like "do not understand") should be returned to the Role object
which will return it to the original caller.

:anyObject :employee (Role)

lastName

salary

asking for the
employee’s name

asking for the

:person (RoleFiller)

lastName

Fig. x: Example of an interaction between any object and a role object.

employee’s salary

31

Consequences

An object-oriented programming language enhanced with delegation will allow a programmer
to use delegation in about the same way as inheritance. Concrete role and role filler objects
have to be defined through specialization. Then an association between the involved objects
has to be established. After those declarations delegation can be used in a transparent way. The
additional abstraction provided by the delegation mechanism requires a performance price to
be paid. This is especially the case for multi level delegation.

Implementation

see 4.4

Sample Code

see 4.4

Known Uses

see 4.2

Related Patterns

The "client specified self" pattern, suggested by [Vil95], provides a mechanism that dispatches
messages sent to one object to another object. This is accomplished by replacing the pseudo-
variable "self" with a variable that can be set by the object that owns it. By assigning another
object to this variable, the methods of this object can be used as if they were contained in the
calling object’s protocol. Compared to delegation this pattern is certainly less flexible, since it
will only "transparently" dispatch messages which are explicitly sent to the "client specified
self". Beck describes a pattern that is similar to delegation in some respect, but certainly does
not serve the same purpose. It is called "instance specific methods" and allows to dynamically
change the methods of an instance [Bec92]. From a conceptual point of view such an approach
is certainly questionable. Another pattern, that is somehow related to delegation is "class mi-
gration" or "dynamic classes" [Wie95]. However, it does not help with most of the require-
ments fulfilled by delegation. Furthermore the idea of an object changing its class seems to be
rather confusing.

5. Concluding Remarks

Delegation is an important concept to enrich both conceptual models and languages used on
the implementation level. While delegation - although not always in a unique way - has been
subject of many publications, popular object oriented modelling methods (like [Boo94],
[Jac92], [Rum93]) do not include it as a concepts of its own. This is also true for recent efforts
to suggest "unified" or "open" (and eventually standardized) modelling languages (like
[FiHe96], [Rat97]).

One essential motivation to introduce delegation is to be seen in the shortcomings of inherit-
ance to model certain aspects of the real world. However, inheritance is not specified in a
unique way - if it is specified at all. The concept of inheritance we used in this report is adapted
from common object-oriented programming languages such as Smalltalk, Eiffel, C++, etc.
With this type of inheritance, sometimes called "intentional inheritance", the concept of a

32

class, its conceptual description, is inherited to its subclasses. An instance of a subclass is not
an instance of the superclass. This is different with a notion of inheritance that is known as "set-
oriented" or "extensional". It is based on the idea of a class as a set of objects. According to
specific object characteristics this set can be divided into subsets, subsets of subsets, etc. Each
subset forms a subclass. Different from intentional inheritance each instance of a class is an
instance of the corresponding superclass at the same time. Kappel and Schrefl describe the dif-
ferent semantics used with inheritance in a comprehensive way ([KaSc96], pp. 15).

It is important to note that extensional inheritance provides features that are very similar to del-
egation. For instance: Both Employee and Student could inherit from Person, but there in-
stances would be instances of Person at the same time. An Employee object of this kind would
behave in the same way as a role. Extensional inheritance is featured by database systems that
extend the capabilities of RDBMS in an object-oriented way - like so called "Object-Relation-
al" DBMS ([StMo95], [Cha96]). With the latest version of SQL ([Mat96]) supporting exten-
sional inheritance as well, it may well be assumed that the next generation of mainstream data
base systems will make extensional inheritance a central concept for managing persistent ob-
jects. At first sight such a perspective may suggest that delegation will become obsolete. How-
ever, it might even promote the future importance of delegation. Object-oriented programming
languages do not support extensional inheritance. Furthermore there is a good reason why this
will not change in future times: It is an essential concept of those languages that an object is
an instance of exactly one class, not of many classes, as it would be the case with extensional
inheritance. Hence a mismatch can be expected between the concepts of inheritance used in
programming languages and in some future database management systems. Delegation could
serve to overcome this problem: Although both concepts do not offer identical semantics, it
could be an interesting option to map extensional inheritance to delegation et vice versa.

Acknowledgements

We would like to thank Michael Prasse for his valuable, and stimulating comments.

33

References

[BaDo96] Bardou, D.; Dony, C.: Split Objects: a Disciplined Use of Delegation within
Objects. In: Proceedings of the OOPSLA’96. New York: ACM 1996, pp. 122-137

[Boo94] Booch, G.: Object-Oriented Analysis and Design with Applications. 2. Aufl., Red-
wood City: Benjamin Cummings 1994

[Bec92] Beck, K.: Instance-Specific Behavior: How and Why. In: Smalltalk Report. Vol. 2.,
No. 6, 1992

[Cha96] Chamberlin, D.: Using the New DB2: IBMs Object-Relational Database System.
San Francisco: Morgan Kaufmann 1996

[CoPo95] Cotter, S.; Potel, M.: Inside taligent technology. Reading/Mass. et al.: Addison-
Wesley 1995

[FiHe96] Donald Firesmith, D.; Henderson-Sellers, B.; Graham, I.; Page-Jones, M.: OPEN
Modeling Language (OML) - Reference Manual. Version 1.0. MS-Word- or Post-
script-Document, obtained via http://www.csse.swin.edu.au/cotar/OPEN/
OPEN.html, Dec. 8th, 1996

[Fra94] Frank, U.: MEMO: A Tool Supported Methodology for Analyzing and (Re-)
Designing Business Information Systems. In: Ege, R.; Singh, M.; Meyer, B. (Ed.):
Technology of Object-Oriented Languages and Systems. Englewood Cliffs/NJ:
Prentice Hall 1994, pp. 367-380

[Gam95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Reading/Mass. etc.: Addison-Wesley 1995

[GoRu95] Goldberg, A.; Rubin, K.S.: Succeeding with Objects. Decision Frameworks for
Project Management. Reading/Mass. etc.: Addison-Wesley 1995

[Howa95] Howard, T.: The Smalltalk Developer’s Guide to VisualWorks. New York: SIGS
Books 1995

[IBM94] IBM: Introduction to OOP and IBM Smalltalk. IBM 1994

[Jac92] Jacobson, I.; Christerson, M.; Jonsson, P.; Overgaard, G.: Object-Oriented Engi-
neering. A Use Case Driven Approach. Reading/Mass.: Addison-Wesley 1992

[JoZw94] Johnson, R.E.; Zweig, J.: Delegation in C++. In: Journal of Object-Oriented Pro-
gramming. Vol. 4, No. 11, pp. 22-35

[KaSc96] Kappel, G.; Schrefl, M.: Objektorientierte Informationssysteme. Konzepte,
Darstellungsmittel, Methoden. Wien, New York: Springer 1996

[KaSu96] Kathuria, R.; Subramaniam, V.: Assimilation: A New and Necessary Concept for
an Object Model. REPORT ON OBJECT ANALYSIS & DESIGN, Vol. 2, No. 5,
1996, pp. 36-39

[Lie86] Lieberman, H.: Using prototypical objects to implement shared behavior in object-
oriented systems. In: OOPSLA, 1986, pp. 214-223

[Mal95] Malenfant, J.: On the Semantic Diversity of Delegation-Based Programming Lan-
guages. In: Proceedings of the OOPSLA95. New York: ACM 1995, pp. 215-230

34

[Mat96] Mattos, N.M.: An Overview of the SQL3 Standard. Database Technology Institute.
IBM - Santa Teresa Lab., San Jose/Ca. 1996

[Parc95] ParcPlace-Digitalk: VisualWorks User’s Guide, 1995

[Rat97] Rational: Unified Modeling Language. UML Semantics. PDF-Document, obtained
via http://www.rational.com/ot/uml/1.0/index.html, Jan. 1997

[Rum93] Rumbaugh, J. et al.: Object Oriented Modeling and Design. Englewood Cliffs/NJ:
Prentice Hall 1993

[Scio89] Sciore E.: Object specialization. In: ACM Transactions on Office Information Sys-
tems, Vol. 7, No. 2, April 1989, pp. 103-122

[Smi95] Smith, W.A.: Using a Prototype-based Language for User Interface: The Newton
Projects Experience. In: Proceedings of the OOPSLA95. New York: ACM 1995,
pp. 61-72

[SmUn95]Smith, R.B.; Ungar, D.: Programming as an Experience. The Inspiration for Self.
In: Proceedings of the ECOOP 95

[StMo95] Stonebraker, M.; Moore, D.: Object-Relational DBMSs: The Next Great Wave.
San Francisco: Morgan Kaufmann 1995

[Ver92] Veryard, R.: Information Modelling. Practical Guidance. New York, London etc.:
Prentice Hall 1992

[Vil95] Viljamaa, P.: Client-Specified Self. In: Coplien, J.O.; Schmidt, D.C.: Pattern Lan-
guages for Program Design. Reading/Mass. et al.: Addison-Wesley 1995, pp. 495-
504

[Weg87] Wegner, P.: Dimensions of Object-Oriented Language Design. In: Proceedings of
the OOPSLA87. 1987, pp. 168-182

[Wie95] Wieringa R.J., Jonge W. de, Spruit P.A.: Using Dynamic Classes and Role Classes
to Model Object Migration. In: Theory and Practice of Object Systems, 1, 1995,
pp. 61-83

