

JÜRGEN JUNG MAPPING OF BUSINESS PROCESS
MODELS TO WORKFLOW
SCHEMATA –
AN EXAMPLE USING MEMO-
ORGML AND XPDL

April 2004

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 47

JÜRGEN JUNG MAPPING OF BUSINESS PROCESS
MODELS TO WORKFLOW
SCHEMATA –
AN EXAMPLE USING MEMO-
ORGML AND XPDL

April 2004

Arbeitsberichte des Instituts für Wirtschaftsinformatik Nr. 47

Die Arbeitsberichte des Instituts für
Wirtschaftsinformatik dienen der Darstellung
vorläufiger Ergebnisse, die i.d.R. noch für spätere
Veröffentlichungen überarbeitet werden. Die
Autoren sind deshalb für kritische Hinweise
dankbar.

All rights reserved. No part of this report may be
reproduced by any means, or translated.

Arbeitsberichte des Instituts für
Wirtschaftsinformatik
Herausgegeben von / Edited by:

Prof. Dr. Ulrich Frank
Prof. Dr. J. Felix Hampe
Prof. Dr. Klaus G. Troitzsch

Bezugsquelle / Source of Supply:

Institut für Wirtschafts- und
Verwaltungsinformatik
Universität Koblenz-Landau
Universitätsstraße 1
56070 Koblenz
Tel.: 0261-287-2520
Fax: 0261-287-2521
Email: iwi@uni-koblenz.de
WWW: http://www.uni-koblenz.de/~iwi

Anschrift der Verfasser
Address of the authors:

Dipl. Inform. Jürgen Jung
Institut für Wirtschafts- und
Verwaltungsinformatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz

The "Arbeitsberichte des Instituts für
Wirtschaftsinformatik" comprise preliminary
results which will usually be revised for subsequent
publications. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der
Übersetzung, des Nachdruckes, des Vortrags, der
Entnahme von Abbildungen und Tabellen - auch
bei nur auszugsweiser Verwertung.

 - 4 -

Contents
Contents.. 4
List of Figures .. 6
1 Introduction .. 7
2 Business Process Modelling... 7

2.1 General Overview .. 8
2.2 Business Process Modelling with MEMO-OrgML.. 8

2.2.1 Processes .. 9
2.2.2 Events ... 11
2.2.3 Control Flow .. 12
2.2.4 Additional Concepts ... 13

2.3 Other Business Modelling Concepts .. 14
2.3.1 Organisational Units... 14
2.3.2 General Resources.. 15

3 Workflow Modelling.. 17
3.1 General Overview .. 17

3.1.1 Workflow Management Coalition.. 17
3.1.2 Workflow Specification Languages ... 19

3.2 Basic workflow concepts ... 20
3.2.1 Workflow Process Definition... 21
3.2.2 Workflow Process Activities.. 21
3.2.3 Transitions.. 23

3.3 Extended Concepts... 23
3.3.1 Workflow Participants.. 23
3.3.2 Workflow Application Declaration.. 24

4 Mapping OrgML to XPDL... 24
4.1 Workflow Process Definitions ... 24

4.1.1 Workflow Process Definition Header .. 25
4.1.2 Workflow Process Redefinable Header. .. 26
4.1.3 Generation of Headers.. 26

4.2 Resources, Information and Organisational Units ... 26
4.2.1 Human Resources... 26
4.2.2 Software ... 27
4.2.3 Information... 28

4.3 Processes .. 28
4.3.1 Manual Processes ... 29
4.3.2 Semi-Automated Processes .. 31
4.3.3 Automatic Process.. 31
4.3.4 Aggregated Process .. 31

4.4 Control Flow and Events.. 32
4.5 Data .. 32

5 Prototypical Tool-Support.. 32
5.1 Implementation of MEMO-OrgML using MetaEdit+ ... 33

5.1.1 Process Decomposition Diagrams.. 33
5.1.2 Process Model Diagrams.. 35

5.2 Extending Business Process Models with Workflow-specific information............. 36
5.2.1 Workflow Specification Diagram .. 36
5.2.2 Workflow Activity Specification Diagram .. 37
5.2.3 Summary of Business- and Workflow-Diagrams .. 38

5.3 Mapping of OrgML-Models to XPDL-Documents ... 39

 - 5 -

5.3.1 Workflow Process Specification Headers and Packages 40
5.3.2 Workflow-Specification ... 41
5.3.3 Activities .. 41
5.3.4 Transitions.. 42

5.4 Configuration of the WfMS ... 43
5.4.1 Mapping of Participants to users.. 43
5.4.2 Updating Workflow-Data... 44
5.4.3 Mapping of Workflow-Applications to Procedures/Applications 44
5.4.4 Example-Implementation of Prototypical Workflow-Applications................. 44

6 Summary and Future Work .. 47
7 Acknowledgments .. 47
Abbreviations ... 48
References .. 49
Previous Reports .. 51

 - 6 -

List of Figures
Figure 1: Process Modelled Using MEMO-OrgML .. 9
Figure 2: Process .. 9
Figure 3: Types of Processes.. 10
Figure 4: Continuously Running Process... 10
Figure 5: Aggregated Process .. 11
Figure 6: External Processes .. 11
Figure 7: General Events.. 11
Figure 8: Time-related Events.. 12
Figure 9: Example for a Sequence ... 12
Figure 10: Alternative Execution ... 13
Figure 11: Parallel execution.. 13
Figure 12: Additional Concepts ... 14
Figure 13: Specification and example of organisational units ... 15
Figure 14: Excerpt from the resources' meta-model .. 16
Figure 15: Workflow Reference Model of the WfMC... 18
Figure 16: Meta-model of the WfMC .. 20
Figure 17: Different kinds of Activities in XPDL.. 21
Figure 18: Prefix of a Workflow Process Definition ... 25
Figure 19: Attributes of a Workflow Process Definition Header... 25
Figure 20: Attributes of a Workflow Process Redefinable Header.. 26
Figure 21: Correlation between Human Resources and Participants 27
Figure 22: Correlation between Software and Application.. 27
Figure 23: Correlation between Information and Data .. 28
Figure 24: Example for manual processes ... 29
Figure 25: Example for alternative 1.. 29
Figure 26: Mapping of manual processes .. 30
Figure 27: Attributes of a manual activity ... 31
Figure 28: Attributes of a semi-automated activity.. 31
Figure 29: Attributes of a automatic activity ... 31
Figure 30: Transitions .. 32
Figure 31: Mapping of data.. 32
Figure 32: Example Process Decomposition Diagram as realised in MetaEdit+ 34
Figure 33: Example Process Model Diagram .. 35
Figure 34: Example Workflow-Specification-Diagram... 37
Figure 35: Example Workflow-Activity-Specification.. 38
Figure 36: Structure of Diagram and Object Types ... 38
Figure 37: Decomposition of Workflow-Process 0.. 39
Figure 38: Process-Model of Workflow-Process 0 .. 39
Figure 39: Mapping of processes to activities.. 42
Figure 40: Example Containing a Parallel Join and Split .. 43
Figure 41: Extended Attributes of the Shark-Engine ... 44
Figure 42: XPDL-specification of the e-mail-sender ... 45
Figure 43: Implementation of an E-Mail-Notification... 46
Figure 44: Mapping of actual parameters to an application... 46
Figure 45: From process models to information systems .. 47

 - 7 -

1 Introduction
Business process modelling (BPM) and Workflow Management (WfM) are two popular
subjects in the area of information systems research (IS research). On the one hand they both
seem to be very similar but on the other hand they concern the same subject from two
different points of view. BPM and WfM foster a mainly process-oriented perspective on
organisations. This process-oriented view comprises activities and their relationships within
and to an organisation’s context. Relationships among business processes might be specified
using control flow (consecutive, parallel or alternative execution), hierarchical decomposition
and/or generic relationships. Relationships to the organisational context comprise the
assignment of organisational units (company, department, role) and resources (tools,
machinery).

Nevertheless, a more differentiating reflection on business processes and workflows seems to
be appropriate1. Referring to several sources, they both represent different levels of
abstraction on process-oriented organisations. According to Frank and van Laak a workflow
mainly concentrates on the processing of digital office documents2. Human activities (in terms
of manual processes) as well as decision making processes are left out or at least reduced to
interactions with software applications. Similar discussions on conceptual distinctions can be
found in the literature. Some examples are given as follows: Böhm summarises the conceptual
differences between business processes and workflows as the emphasis of IT on workflows.
Like other authors, he places business processes more on a conceptual level of the enterprise3.
Junginger also mentions the fact that every kind of resource might be assigned to a business
process4 while workflows are mainly supported by IT-related resources. Stark characterises
workflow by the management and support of business processes combined with IT5.

This research paper describes a first approach towards the mapping of concepts of a given
business-process-modelling-language to workflow schemata. This work outlines conceptual
equivalences and differences. For the support of the mapping of business processes to
workflow schemata we will especially focus on information which has to be added to business
processes in order to map them to workflows. The structure of this report is given as follows:
The next two sections give an overview on business process modelling (section 2) and
workflow management (section 3), respectively. Extensions to the business process modelling
language (section 4) as well as a prototypical implementation of a tool (section 5) will be
presented afterwards. This report ends with a summary, concluding remark and an outlook to
future work in section 6.

2 Business Process Modelling
This preliminary section provides an overview over general aspects and the area of
application of business process modelling. Additionally, core concepts of a business process
language will be presented.

1 The notion of business process and workflow are further presented in the following sections 2 and 3.
2 Cf. [FrLa03]
3 Cf. [Böhm00, p. 3]
4 Cf. [Jung01, p. 18]
5 “Workflow promises a new solution to an age-old problem: managing and supporting business processes. What
is new about workflow is the way it harnesses the power of information technology to structured work.” [Sta97,
p. 5]

 - 8 -

2.1 General Overview
The analysis, representation and management of knowledge about an organisation and its
processes has always been very important6. A lot of work has been done on the development
and evaluation of ontologies for process modelling7, the specification of process modelling
languages8 as well as on business process modelling methods and concepts9. Business process
models can be used for different kinds of purposes:

• Documentation of processes of an organisation to foster communication10
• Analysis of business processes11
• Simulation of processes12
• Support for business process re-engineering13
• Software development of process-oriented applications14

The documentation of an organisation’s processes (as well as other organisational aspects like
its structure or strategy) fosters communication with new employees or external consultants.
Business process models represent a common medium for the communication of domain
experts and novices. They offer domain level concepts and enable a broader distribution of
knowledge among other business-related people with different skills and knowledge of an
organisation.

The analysis of business processes relies on a detailed description (with respect to the
analysis’ purpose) of process models and related concepts. Depending on the analysis’
purpose, a modelling language has to offer language features for the modelling of the facts
which are in its scope. Analysis might for example support the detection of weaknesses in
existing processes. Appropriate language features provided by a process modelling language
support the determination of media clashes, unnecessary processes or potentials for further
optimisations. Nevertheless, the potential for further optimisations relies on the degree of
formal description of the business process model. Depending on identified weaknesses, a
business process re-engineering might be applicable.

2.2 Business Process Modelling with MEMO-OrgML
Multi-Perspective Enterprise Modelling (MEMO) is a method for the modelling of
organisations according to different views as well as different levels of abstraction15. MEMO
has been initiated by Ulrich Frank and is the main research topic of the research group ’Enterprise
Modelling’ at the University of Koblenz. MEMO includes several languages for modelling static,
functional and dynamic aspects of an enterprise. One of these languages is the MEMO-OrgML
(Organisation Modelling Language), which supports modelling of organisational structures and
processes. Resource modelling has not been subject of the first conceptualisation of the MEMO-
OrgML but will be added shortly16.

An introductory example for a process that has been modelled using MEMO-OrgML is given in
Figure 1. An order is received by the distribution department and the data will be checked directly
afterwards (process No. 1 called ’Check Data’). The order will be further processed if the given data is

6 Cf. [KoPl00]
7 Cf. [WaWe93], [Web97] and [GrRo99].
8 Cf. [EJLT99] and [SuOs97]
9 Cf. [Herb97] and [Öst95].
10 Cf. [Obe96] and [Fra99]
11 Cf. [BeJo01], [EJLT99] and [Sche99].
12 Cf. [Baum96]
13 Cf. [CKO92] and [Obe96]
14 Cf. [CKO92], [Öst95] and [Fra99]
15 Cf. for example [Fra99].
16 The preliminary conceptualisation can be found in [Jung03].

 - 9 -

valid (event No. 4 called ‘Valid Data’) or aborted if the data seems to be invalid (event No. 3).
Aborting an order results in sending a rejection message to the customer in process No. 9 (‘Compose
Rejection Message’). Further processing of the order comprises the entering of the data into the order-
management-system (process No. 2: ‘Enter Order’) the parallel execution of the processes 6, 7 and 8.
Process No. 6 is a composed process which consists of one or more sub processes. The process called
‘Compose Acceptance Message’ (No. 7) is a semi-automated process executed by the distribution
department. Process No. 8 is a fully automated process sending a default email-message to the
customer.

- 1 -
Start Order
Processing

<Distribution>

Check Data
- 1 -

- 2 -
Order

Processing
Complete

<Distribution>

Compose
Rejection
Message

- 9 -- 3 -
Invalid Data

- 4 -
Valid Data

<Distribution>

Enter Order
- 2 - - 5 -

OrderAvailabl
e

<Distribution>

Fill Order
- 6 -

<Distribution>

Compose
Acceptance

Message

- 7 -

<>

Email
Confirmation

- 8 -

Figure 1: Process Modelled Using MEMO-OrgML

The example given above contains only an extract of the language features offered by the
MEMO-OrgML. A detailed presentation of all language features will be given in the
following sections. Section 2.2.1 starts with different kinds of processes and will be followed
by the presentation of events in section 2.2.2 and the specification of control-flow between
process elements in section 2.2.3. We will close with the discussion of additional concepts
provided by the MEMO-OrgML in section 2.2.4.

2.2.1 Processes
The general specification of a process in MEMO-OrgML is shown in Figure 2. Every process
can be assigned to an organisational unit, which is annotated on top of the graphical notation
of a process. Examples for organisational units are a whole organisation, department, business
unit or a role. Additionally, a process can be identified by a unique number (‘number’ in
Figure 2) and described by a meaningful qualifier.

<role or
organisation>

qualifier
- number -

Figure 2: Process

 - 10 -

There are several different types of processes in MEMO-OrgML which are classified using
different kinds of aspects.

2.2.1.1 Elementary Process Types
Elementary processes in MEMO-OrgML are classified by the types of resources required for
their execution. Processes can be executed manually, automatically or semi-automated (refer
to the graphical notation in Figure 3). Manual processes are exclusively performed by human
resources without any IT-support. In contrast to this, automated resources are solely executed
by computing machinery without any support of human resources. Semi-automated processes
refer to a support by human and technological resources. Whether semi or fully automated,
the focus is on IT resources.

<role or
organisation>

qualifier
- number -

<role or
organisation>

qualifier
- number -

<role or
organisation>

qualifier
- number -

Figure 3: Types of Processes

The processes presented so far are usually subject to a specific start and end. A manual
process for the installation of a controller for a central heating in a building can only begin
after an order is entered and will end with the completion of the order. Nevertheless, there are
some tasks without a specific start and end. Those processes usually run continuously. An
example for such a process is the quality assurance. Tasks related to quality assurance might
not directly relate to specific sub processes in software development. Furthermore, quality
assurance is orthogonal to a software development method because it has to be guaranteed at
every stage of a software development process. Hence, quality assurance has to be done
continuously, keeping every task regarding software-development in mind. The graphical
notation for continuously running processes is displayed in Figure 4.

<role or
organisation>

qualifier
- number -

Figure 4: Continuously Running Process

2.2.1.2 Aggregated Process Type
An aggregated process is composed of other elementary or aggregated processes. Equally like
general processes, aggregated processes can be specified by assigning an organisational unit
and annotating a unique number and a descriptive name (qualifier). The graphical notation for
an aggregated process is given in Figure 5. It is important to note that an aggregated process is
mainly specified by its sub processes. Also its sub processes are assigned to an organisational
unit and specified according to necessary resources. Furthermore, an essential part for the
specification of an aggregated process is the control flow between its sub processes. Hence,
every aggregated process has to be specified by a process model containing its sub processes
and their control flow.

 - 11 -

<role or
organisation>

qualifier
- number -

Figure 5: Aggregated Process

2.2.1.3 External Processes
External processes are generally executed by external organisations. Examples for external
processes are those which are executed by an autonomous partner or a subcontractor. In
MEMO-OrgML, we differentiate between different kinds of partners regarding external
processes. The main focus is on the independency of the given organisation. According to the
graphical notation given in Figure 6, there are types of partners (from left to right): contractor,
autonomous institution and partner.

<role or
organisation>

qualifier
- number -

<role or
organisation>

qualifier
- number -

<role or
organisation>

qualifier
- number -

Figure 6: External Processes

A contractor is an external organisation, which is bound to the terms and conditions of the
given organisation. It is an independent organisation but depends on the requirements given
by the principal. An example for a contractor is the supply industry in the automotive sector.
Every supplier depends on a car manufacturer specifying the technical data and contracts. In
contrast to this, an autonomous institution is very independent from the given organisation.
An autonomous organisation is free in the specification of contracts and cannot be forced by
other organisations. External partners are a special kind of contractor, which are more
independent than a contractor but less free than an autonomous organisation.

2.2.2 Events
Events represent special states during the execution of business processes. An event is a
momentous symptom and not a period of time. The most important types of events in
MEMO-OrgML are given in Figure 7 (from left to right): Start event, stop event, an event
indicating the change of a state and an event for an incoming message. For every business
process there is a dedicated starting event as well as a final state. Those events form the
boundary between the modelled process and the organisation’s context. In contrast to a
general event indicating the change of an internal state, the incoming information event
corresponds to an increase of information within the process system.

- ID -
qualifier

- ID -
qualifier

- ID -
qualifier

- ID -
qualifier

Figure 7: General Events

 The event types presented so far cover general aspects of process models like start, stop,
status changes and incoming news. Nevertheless, they ignore timely aspects like points of
time and periods (their graphical notation is given in Figure 8). A point of time corresponds to
a well-defined timestamp and a period to an interval given by a well-defined end. Hence, a

 - 12 -

moment can be specified by its absolute specification. The end of a period might only be
described by a timestamp relative to a given or imaginary starting point.

- ID -
qualifier

- ID -
qualifier

Figure 8: Time-related Events

2.2.3 Control Flow
Control flow specifies flow-related relationships between processes. Those relationships
might be determined by logical or temporal constraints on the execution of business
processes. We mainly distinguish between sequence, concurrency and alternative.

2.2.3.1 Sequence
A sequence in business process modelling usually corresponds to the consecutive execution of
processes. Hence, the termination of one process results in the instantiation of exactly one
following process. Figure 9 shows an example for a sequential execution regarding to events.
The interpretation is as follows: If event No. 1 (data available) occurs, process No. 1
(Check Data) can be started. The termination of this process fires event No. 2.

- 1 -
data

available

<Distribution>

Check Data
- 1 - - 2 -

Data Verified

Figure 9: Example for a Sequence

2.2.3.2 Alternative
An alternative is as general rule interpreted as a fork of control flow. This means that after the
execution of one process called A either a process B or a process C is initiated. Alternative
execution of business processes. In other terms there can be only one successor of process A
within a concrete instantiation of the whole process, namely B or C in the example. In sense
of mathematical logic this represents an exclusive-or (XOR) relationship between following
processes. This is not restricted to only two processes. Several succeeding processes can be
involved in such a relation. In addition to the fork of process flow there is also an equivalent
join. The graphical notation for an alternative is given in Figure 10. After the process No. 1 is
completed either the events 3 or 4 will be fired. If event No. 3 (data is invalid) is fired, the
execution continuous with process No. 2 (enter order)

 - 13 -

<Distribution>

Check Data
- 1 -

<Distribution>

Compose
Rejection
Message

- 9 -- 3 -
Invalid Data

- 4 -
Valid Data

<Distribution>

Enter Order
- 2 -

Figure 10: Alternative Execution

2.2.3.3 Concurrency
Many processes can be executed in parallel or concurrently. Generally speaking, the parallel
execution is identical with the execution at the same time. In contrast to this, concurrency
only means, that processes might be executed independently from others. But there is no such
differentiation in MEMO-OrgML. There is only one language feature for concurrency,
neglecting the fact of simultaneous execution. An example for the concurrent execution of
processes is given in Figure 11. Event No. 5 (OrderAvailable) fires the concurrent execution
of the two processes Fill Order and Email Confirmation (AND-split). The synchronisation
(AND-join) of these two parallel paths results in event No. 2 called Order Processing
Complete. Alternatively an OR-join17 is possible if only one parallel branch has to terminate
in order to fire event No. 2.

- 2 -
Order

Processing
Complete

<Distribution>

Fill Order
- 6 -

<>

Email
Confirmation

- 8 -

- 5 -
OrderAvailabl

e

Figure 11: Parallel execution

2.2.4 Additional Concepts
In addition to the process-oriented concepts, exceptions, notes and constraints are provided in
the MEMO-OrgML (their corresponding graphical notation is shown in Figure 12). An
exception corresponds to an event which indicates an unusual behaviour during the execution

17 The graphical notation for an Or-join is not given in this document.

 - 14 -

of a process. Examples for such kinds of exception are the failure of an IT resource, the
breakdown of a truck or the illness-related absence of a human resource. Those kinds of
exception are usually hard to integrate as regular events with business process models using
common control flow. It is not always clear what has to be done in case of an exception.
Hence, the exception assigned to a business process indicates the appearance of a faulty event.
A procedure for handling every kind of exception has to be described or at least a global
exception handling routine.

Bezeichner

C

Exception ConstraintNote

Figure 12: Additional Concepts

A note is a textual description for special aspects of a business process model and is intended
for human readers. Automatic processing of notes by computerised IS-systems is not planned.
A given note might be related to a process model, a single model element or any extract from
the model. In contrast to this, a constraint serves to the specification of formal conditions. A
constraint usually refers to information objects used in the business process. Consequently, a
constraint can only be formulated formally if business documents are described in a formal
manner.

2.3 Other Business Modelling Concepts
In addition to the process-oriented concepts given in section 2.2 there are two other kinds of
language features for modelling process-oriented organisations. Organisational units
correspond to departments, divisions or roles which are assigned to a business process as a
responsible actor. Resources are actors or tools which are required for the execution of a
business process.

2.3.1 Organisational Units
The static structure of organisations can be described by an organisational chart. Such a chart
shows an organisation by its sub-units and their respective relationships. The meta-model for
the modelling of organisational charts is given in Figure 13 a). An abstract organisation unit
might either be a position or an organisational unit. Every organisational unit is a composition
of other abstract organisational units. A position is an elementary description of the
responsibilities of an employee. An example for an organisational chart is given in Figure 13
b): An imaginary company consists of three departments for procurement, production and
distribution.

 - 15 -

AbstractOrganisationalUnit

Position OrganisationalUnit

a)

b) Company

Procurement DistributionProduction
Figure 13: Specification and example of organisational units

Organisational units and roles are elements assigned to business processes and refer to human
actors which are responsible for the execution of a business process. Organisational units and
positions as described here can be assigned to business processes as described in section 2.2.1.
Roles are not necessarily defined in an organisational chart but can be assigned to business
processes.

2.3.2 General Resources
Resources are essential for modelling processes18. Processes and their relationships mainly
describe dynamic aspects and the order of events. Resources assigned to processes
additionally specify subjects and objects of business processes. Resources are usually not
available in an unlimited amount19. Hence, the usage of scarce resources has to be taken into
account for the analysis or simulation of processes as well as for the development of a
workflow application or an information system. As the resource-modelling-language for
MEMO-OrgML is currently under development, no graphical notation will be given here but
a short introduction into the underlying meta-model. An excerpt from this meta-model is
shown in Figure 14. The class AbstractResource is the root of the generalisation hierarchy on
resources. Every resource has a name (name : String), a textual description (description :
String) and a list of resource attributes (attributes[0..*]:ResourceAttribute). Every resource
attribute is a name-type pair for the specification of user-defined attributes on resources.

18 cf. [PSO99]
19 cf. [Nübe01] and [PSO99]

 - 16 -

-name[1] : String
-description[1] : String
-attributes[0..*] : ResourceAttribute

AbstractResource

-competenceProfile : String
-qualifications : String

HumanResource PhysicalResource IntangibleResource

-systemRequirements : String
-scalability : String

Software
-typeDefinition : String

Information

Figure 14: Excerpt from the resources' meta-model

Within the context of workflow-modelling, we generally distinguish between human, physical
and intangible resources. A human resource is an abstraction on different perspectives on
staff. Examples for such perspectives are concrete employees, roles filled by employees or
business-oriented functions. Physical resources comprise all tangible objects used within a
business process. Examples for physical resources are production plants, raw material or
computer hardware. In contrast to this, intangible resources do not have a physical
manifestation. Examples for intangible resources are data, information, software or even
knowledge.
Human resources are an abstraction on persons, employees, roles or other staff-related
perspectives. They might be associated with concrete persons or employees of an organisation
as well as abstract organisational units in an organisational chart. Hence, a human resource
can be characterised by different aspects. A human resource …

• … can play an active role
• … may be responsible for the execution of e-business processes
• … needs some qualification and competences for its job

The type HumanResource is a subtype of AbstractResource and has the two attributes
qualification and competenceProfile, both of type String (cf. Figure 14). The qualification
is an objectively describable criterion for the capabilities of a human resource. Usually, the
qualification certificate is issued by an established educational body. The competence of a
human resource reflects personal skill of human beings. Hence, a competence profile
corresponds to personal strengths.
Physical resources comprise all tangible objects used within a business process and are
neither human nor intangible. According to Heinen20 - in the context of industrial production -
it can be differentiated between non-consumable resources (German: Potentialfaktoren) and
consumable resources (Repetierfaktoren). Non-consumable resources are not used up during a
manufacturing process and are still available afterwards whereas consumable resources are
either becoming a part of the resulting product or are being used up and therefore are not

20 see [Hei88], p. 242

 - 17 -

available anymore21. In the paper at hand we abstract from physical resources, because these
are not relevant in our context of workflow applications and the perspectives we present on it.
Intangible resources are resources without a physical manifestation. Software in terms of a
set of programs that run on a computer hardware is a key resource in the process of supporting
workflows. The meta-type Software has two attributes: systemRequirements and
scalability both of type String. The system requirements are modelled as text and describe
the environment for the execution of a software system (i.e. processor architecture, minimum
main memory or operating system). Scalability corresponds to the ability of supporting
growing numbers of clients. The meta-type Information was created to represent information
or knowledge that is relevant within workflows. It has attributes name (a symbolic reference
to an information instance) and typeDefinition of type String which describes how the
information is structured. Examples for information are certain customer data or enterprise
knowledge of some kind.

3 Workflow Modelling
This section provides an overview on workflow management concepts. It covers the basic
terminology, major standards for workflow schema interchange and presents a standard for
schema definition of the WfMC – XPDL.

3.1 General Overview
Workflow management is an important technology in the area of IS Research and focuses on
the support and management of electronically supported processes. This section provides a
short introduction into workflow management by giving an overview on common terminology
and the description of the standards of the Workflow Management Coalition.

3.1.1 Workflow Management Coalition
The Workflow Management Coalition (WfMC) was founded in 1993 and is an alliance of
companies and organisations dealing with workflow management. The mission of the WfMC
is the foundation of a common terminology regarding workflow management and the
establishment of standardised interfaces. These interfaces comprise the definition, execution
and management of workflows as well as references to external documents and applications22.
The conceptualisation of the interfaces is given by the WfMC’s reference model depicted in
Figure 15. Core of the reference model23 are the workflow enactment services using one or
more workflow engines for the execution of workflows. A workflow engine is a software
managing workflows regarding to given workflow definitions.

21 see [SS01], pp. 89-90
22 Cf. [Jung01, pp. 126] and the references given there
23 The WfMC reference model is specified in [Holl95].

 - 18 -

Workflow
Client

Applications

Other Workflow
Enactment Services

Workflow
Engines

Workflow API and Interchange Formats

Workflow Enactment Service

Workflow
Engines

Interface4Administration &
Monitoring Tools

Process
Definition

Tools

Invoked
Applications

Interface1

Interface5
In

te
rfa

ce
 2

Interface 3

Figure 15: Workflow Reference Model of the WfMC24

The five different interface definitions correspond to the integration of external aspects:

- Interface 1 specifies the exchange of workflow models between external modelling
tools and a workflow management system. External tools might be graphical editors
for workflow definition or just a textual editor. Nevertheless, some general purpose
process modelling tools supporting the WfMC standard can be used for the
specification of workflows25.

- Interface 2 describes the communication between a WfMS and workflow client
applications. Workflow client applications are applications directly correlated with the
workflow engine. They usually implement basic functionality of workflow
applications like notification and data transfer26.

- Interface 3 addresses the need of integration of external applications. Usually, the
needed functionality might not be completed by the WfMS. Hence, there has to be an
interface to other applications already running in the enterprise27. Examples for such
kind of applications are business related software and special software tools.

- Interface 4: Goal of interface 4 is the integration of other workflow management
systems. The specification comprises the invocation of remote activities, data transfer
as well as synchronisation aspects between different workflow enactment services28.

- Interface 5 describes the communication between the workflow enactment services
and external monitoring and administration tools29.

Interface 1 is the most relevant specification for the purpose of mapping business process
models to workflows. It concentrates on the specification of different types of workflows

24 Source: [Holl95, p. 20]
25 Cf. [Gad01, p. 48]
26 Cf. [Holl95, pp. 31]
27 Cf. [Holl95, pp. 35]
28 Cf. [Jung01, p. 126] and [Holl95, pp. 41]
29 Cf. [Jung01, p. 126].

 - 19 -

(processes) as well as associated organisational units and applications. The system-specific
integration of applications is done using interface 2/330.

3.1.2 Workflow Specification Languages
WPDL31 is the first attempt of the WfMC to specify of a standard for the interchange of
workflow definitions. Being a standard for exchanging models, it does not comprise a
graphical notation. Meanwhile, WPDL has been replaced by XPDL32, an XML-based
document definition for workflows. The basic conceptualisation of the XPDL is represented
by the meta-model shown in Figure 16. This meta-model generally comprises static entities
(e.g. data or applications) as well as dynamic concepts (processes). Static entities are
represented by the meta-types

- Workflow Relevant Data,
- Workflow Participant Specification and
- Workflow Application Declaration.

Workflow-relevant data is initialised, created, read from external applications and used during
the execution of workflows33. It might be produced by an activity within a workflow or
extracted from an external data source (like an enterprise information system). The creation of
a new data entity or the digitalisation of a document might be sources for the creation of data
in the context of a workflow. Examples for external data sources are corporate databases
containing relevant data for an enterprise. These data sources are represented by the meta-type
System and Environmental Data in Figure 16. The workflow participant specification
describes the resources which perform the given workflow processes34. This specification
does not necessarily correspond to a human or a single person. It actually represents an
abstract resource or a role which can be filled by one or more humans as well as an automated
machine. Nevertheless, the specification of a workflow participant corresponds to a resource
available in an organisation or an entity in an organisational chart (Resource Repository or
Organisational Model). The workflow application declaration provides the description of
software applications needed for the execution of a workflow process35. Those applications
are usually invoked by the workflow engine and workflow-relevant data has to be passed as a
parameter. Examples for workflow applications are internal applications as well as external
applications like corporate information systems or common office applications. Internal
applications are usually provided as part of a workflow management system or can be
developed using a proprietary36 development environment or language.

30 Interfaces 2 and 3 are combined to one interface definition by now (cf. [WfMC98] and [Jung01, p. 127]).
31 Workflow Process Definition Language
32 XML Process Definition Language (cf. [Nori02])
33 Cf. [Nori02, p. 10].
34 Cf. [Nori02, p. 9].
35 Cf. [Nori02, pp. 9].
36 By the term ‘proprietary’ we mean an environment or language which is part of the WfMS.

 - 20 -

Workflow Process
Definition

System and
Environmental

Data
Workflow

Relevant Data

Workflow
Participant

Specification

Resource Repository
or Organizational

Model

Workflow
Application
Declaration

Activity Set

Workflow Process
Activity

Transition
Information

Block Activity

Sub-Process
Definition

Atomic
Activity

1

*

1

*

1

*

1

*

invoke

performed by

from to

1
*

1

*

1

*

1

*

Figure 16: Meta-model of the WfMC37

A workflow process definition is an aggregation of static entities (data, applications,
participants) as well as the description of the system’s dynamic behaviour. Dynamic aspects
of the meta-model are represented by the entity-types Transition Information as well as
Workflow Process Activity and its concrete subtypes

- Block Activity,
- Atomic Activity and
- Sub-Process Definition.

An activity is a given unit of work which will be executed by a participant using computer
applications38 and relevant data. Additionally, every activity is characterised by a start- and
end-time as well as the fact whether it can be executed automatically by the WfMS or by a
workflow participant. The transition information specifies the control flow between
activities39. It consists of a starting activity, an end-activity and a condition under which the
transition is made. An atomic activity is an indivisible unit of work which has to be done at
one go. A sub-process definition allows the embedding of another workflow process
definition. A block activity consists of a set of other activities (type Activity Set). The
semantics of an activity set is similar to the one of a macro. If an activity set is called during
the execution of a workflow process, the activities contained in the set are copied into the
calling process definition40.

The concepts given here will be further discussed later in this research report. Different types
of processes and transitions will be presented in the following section 3.2. Additional
concepts like applications or participants are subject to section 3.3.

3.2 Basic workflow concepts
Main concepts for the description of the dynamic aspects of a workflow system are activities
and transitions. Activities correspond to defined units of work which can be atomic or consist
of a set of activities. The control flow between activities is specified by transitions. Hence, a
transition relation between two activities defines the ordering of these activities. An activity
can be started if its preceding activities (connected by transitions) have been terminated.
Transitions, activities and static entities (i.e. IT-related resources) are grouped by a so called
workflow process definitions.

37 Source: [Nori02, p. 12]
38 Cf. [Nori02, p. 8]
39 Cf. [Nori02, p. 9]
40 Cf. [Mato03, p. 13]

 - 21 -

3.2.1 Workflow Process Definition
A workflow process definition groups all elements necessary for the execution of a
workflow. As shown in the meta-model in Figure 16 these elements comprise dynamic
(activities and transitions) and static aspects (data, applications and participants). Additional
attributes are a unique identifier, a name and two headers. The process header comprises the
creation date, a textual description and different time-related properties (e.g. estimated
duration of a process’ execution) of a workflow process. The redefinable header consists of
information about the author of the process definition, a country key, its publication status,
responsible participants and a version number.
An activity set is a set of activities and transitions. All transitions contained in this set can
only start from activities within this set and end in activities within this set. In other words,
there are no transitions leaving an activity set or coming from outside. Properties of an
activity set are a list of activities, a list of transitions and a unique identifier.

3.2.2 Workflow Process Activities
As shown in Figure 16, there are different types of activities within a workflow process
definition. An atomic activity is an indivisible unit of work executed under the control of a
WfMS. Such an activity can be executed automatically or by a human participant and usually
works on workflow-relevant data. In contrast to this, block and route activities do not refer to
workflow-relevant data. A block activity executes an activity set and has no own behaviour.
Invoking an activity set means the start of the first activity in the set. The execution terminates
with the last activity in the activity set (cf. Figure 17). A route activity is an activity with no
behaviour. It only serves as a dummy activity for cascading transition conditions41.

Figure 17: Different kinds of Activities in XPDL42

According to XPDL there is only one general XML-element for activities called ‘Activity’.
Specific elements for route, block or sub-flow activities are missing. The differentiation
between different types of activities is done by the annotation of alternative attributes. Those
attributes are named Route, Implementation43 and BlockActivity. Activities can additionally
be specified according to their level of automation (automatic or manual) as well as their

41 Please refer to section 3.2.3.
42 Source: [Nori02, p.30]
43 The WfMC uses three different names for the same concept: An atomic activity (cf. [Nori02] , p. 12) is also
called generic activity (cf. [Nori02], p. 30) and implementation (cf. [Nori02], p. 31).

Join
Element

Split
Element

Activity
Body

Incoming
Transitions

Outgoing
Transitions
Generic
Activity

Join
Element

Split
Element

Null

Incoming
Transitions

Outgoing
Transitions

Block
Activity

Join
Element

Split
Element

Null

Incoming
Transitions

Outgoing
Transitions

Route
Activity

Join
Element

Split
Element

Activity
Body

Incoming
Transitions

Outgoing
Transitions
Sub-flow
Activity

Sub-processActivity Set

 - 22 -

implementation alternatives (no implementation, tool or subflow). An automatic activity can
be fully controlled by the workflow engine using internal and external applications. Manual
activities require the involvement of a human being. Activities corresponding to the no-
implementation alternative cannot be supported by an WfMS. These are usually manual tasks
which can be executed without the support of a WfMS. A tool supported implementation
implies the support of a software application. Such applications have to be assigned to this
kind of activity44. If the implementation type is set to subflow, the execution has to be
delegated to another workflow process definition. Parameters can be passed to such a sub-
flow activity and the synchronisation can be specified with respect to a synchronous or
asynchronous execution. Synchronous execution requires the calling process to wait for the
termination of the called process. After its termination the called process might pass output
values to the calling process. During an asynchronous execution the calling process has not to
wait for the termination of the called process and output values are not possible.
Atomic, tool-supported activities might be executed by a human actor. Such a human resource
corresponds to the XPDL-type participants. Human resources and participants can be
associated with staff members45. This association is not part of the XPDL specification and
has to be implemented by a concrete WfMS-implementation. XPDL only describes on an
abstract level the participants of a workflow correlating them to typical roles. In contrast to
this a WfMS manages users of a system which can in turn fill a specific role. The mapping of
the roles provided in an XPDL-description to roles given in a WfS46 has to be done by the
WfS itself. If an XPDL-participant cannot be mapped to a WfS-role, a default role has to be
applied. A participant without any correspondence in the WfMS might – for example – be
assigned to a default role like an administrator.
Additional information for activities are deadlines and simulation information. A deadline is
the expiration of a given period of time. A deadline might for example be a milestone (given a
project management context) or specific appointment. The occurrence of a deadline can be
handled synchronously (the current activity is interrupted by the deadline) or asynchronously
(the handling of the deadline has to be done parallel to the currently running activity).
Simulation information extends the model by giving specific data for the simulation of
models. Examples for specific data are average costs, expected duration and average waiting
time.
As shown in Figure 17, every activity is a join-point for several incoming transitions (join
element) and specifies the type of splitting for outgoing transitions (split element). Both – join
and split – can refer to a parallel or an alternative execution of workflows. An alternative split
(XOR) represents a fork specifying that exactly one of the given alternatives can be executed.
An alternative join corresponds to the synchronisation of an alternative split47. The parallel
execution of activities is started by an AND-split and ended by an AND-join. Rules for the
construction of workflow descriptions regarding parallel and alternative connectors (splits and
joins) are classified by so called conformance classes. A conformance class specifies criteria
for the construction of diagrams of activities. A NON-BLOCKED conformance class implies
no formal properties of a diagram regarding the relationships between splits and joins. If the
conformance class is set to LOOP-BLOCKED, the graph build by the activities and
transitions is a directed acyclic graph48. A FULL-BLOCKED graph implies that every AND-
split has exactly one AND-join, every XOR-split exactly one XOR-join and vice versa.
Additionally every path starting from the split will reach the corresponding join.

44 The assignment of applications to workflows will be presented and further discussed in section 3.3.2.
45 This will be subject to section 3.3.1.
46 Workflow System
47 We assume that every alternative split has an equivalent alternative join. Hence, every path beginning at a
given alternative split will end at one – and exactly one – alternative join.
48 DAG = Directed Acyclic Graph

 - 23 -

3.2.3 Transitions
A transition is the partly specification of the control flow between activities. As shown in
section 3.2.2, the information whether incoming transitions of an activity are disjoint
(alternative) or conjoint (parallel) is assigned to the activity. Additional information about a
transition is assigned to the so called transition information49. Basic elements of such a
transition are its name (i.e. a character string), a textual description and a condition. While a
description usually consists of a natural language description a condition should be a (semi-
)formal specification of the circumstances enabling or disabling a transition. It therefore has
to be represented by a Boolean expression. Additionally, a starting and an ending node are
assigned to transition information.
Consequently, every transition is characterised by exactly one source activity (from), exactly
one destination activity (to) and a Boolean expression representing a firing condition. There
are four different kinds of conditions in XPDL:

- CONDITION: A transition can fire if its condition is evaluated to true.
- OTHERWISE: Indicates a default transition which will fire if no other transition’s

condition evaluates to true.
- EXCEPTION: An exception is a special transition indicating an abnormal behaviour.

An exception-condition can trigger the rising of a special condition.
- DEFAULTEXCEPTION: A default exception is triggered if all other exception

conditions are evaluated to false.
Dis- and conjointness of transitions are specified by the splits and joins assigned to activities.
Conditions regarding the validity of the execution of a transition are assigned to the transition
information. Hence, the description of the control flow in a workflow model is split up into
the nodes (activities) and arcs (transition information) of a workflow model.

3.3 Extended Concepts
Workflows are managed by a workflow management system by assigning tasks (as parts of
workflow instances) to given resources. Such a resource might be either a human participant
or a workflow application. A human resource usually corresponds to a role filled by a specific
person in an organisation. A workflow application might be categorised into internal and
external applications. An internal application is usually implemented by the WfMC itself50
and is closely coupled to the workflow system. An external application can be characterised
as an application independent from the WfMS.
Regarding the specification of resources for the execution of workflows there is one major
problem. On the one hand, XPDL aims to be a language for a system-independent workflow
definition interchange. Hence, a workflow model described using the XPDL should be
independent from any specific workflow engine. On the other hand, the description given by
an XPDL-document should be precise enough for the execution of workflows. This aspect
might require the annotation of specific users or applications which are subject to a
proprietary definition by a WfMS. Consequently, the XPDL-definition only provides an
abstract mechanism for the specification of human resources and software-applications.

3.3.1 Workflow Participants
Regarding the XPDL-specification, workflow participants are “an abstraction level between
the real performer and the activity, which has to be performed.”51 The engine has to map

49 “The Transition Information describes possible transitions between activities and the conditions that enable or
disable them (the transitions) during workflow execution. Further control and structure restrictions may be
expressed in the Activity definition.” [Nori02, p. 40]
50 To be more precise: An internal workflow application is usually implemented using a programming language
and environment given by the WfMS.
51 Cf. [Nori02, p. 43].

 - 24 -

every abstract participant to a user given in the workflow management system’s environment.
Every abstract participant is characterised by its unique name and type52. Possible types of
workflow participants are:

- RESOURCE: A specific resource given in a workflow management system’s
environment.

- RESOURCE_SET: A set of resources.
- ROLE: A role description that directly corresponds to a role given in an organisational

chart. Such a role might be a function or some kind of qualification filled by a human.
- ORGANIZATIONAL_UNIT: An arbitrary element of an organisational chart.
- HUMAN: A human being interacting with the WfMS by worklists and/or applications

(i.e. a concrete human being, like ‘John Miller’)
- SYSTEM: A software application representing the participant of a fully automated

workflow.

Those participants are assigned to activities of a workflow model using the Performer-
attribute of an activity53. Hence, an activity keeps a reference to an abstract participant using
the performer-attribute (which is rather a character string than a reference to a workflow
participant). Unique identifiers of participants are used to specify an activity’s performers. A
workflow model describes participants on an abstract level, like organisational units or roles.

3.3.2 Workflow Application Declaration
Regarding to Junginger, workflow applications can be divided into internal and external
applications54. An internal workflow application is implemented as part of the WfMS. They
are usually implemented using a programming language given by the WfMS. In the context of
XPDL, those applications are called procedure. An external application is an individual
software package which can be used by a WfMS. Hence, an internal application is part of the
WfS and an external applications is part of the corporate information system involved in a
workflow.
Using XPDL, a workflow application is specified by a unique identifier, its type and a list of
parameters. The name of an application is rather the unique id and does not necessarily
correspond to its physical location or a concrete implementation. Like the description of
workflow participants, the identification of a workflow application is only a symbolic link.
The interpretation of such a symbolic link representing a workflow application depends on the
WfMS at hand. There are workflow engines supporting internal applications, external
applications or both55. Hence, the differentiation between internal and external workflow
applications relies on the capabilities of the workflow engine. In general, the mapping of
abstract applications (procedures or applications) to concrete applications has to be done by
the WfMS

4 Mapping OrgML to XPDL
This section focuses on the information given by a business process model and its
transformation to a workflow model.

4.1 Workflow Process Definitions
Every workflow process definition in XPDL generally consists of activities, transitions,
applications, participants and workflow-relevant data. Hence, such a workflow process

52 Additional attributes are a textual description and a reference to an external description of a participant.
53 Cf. [Nori02, p. 31].
54 Cf. [Jung01].
55 Cf. [Jung01].

 - 25 -

definition comprises its activities and corresponding resources56. Additionally, every
workflow process definition consists of two different headers and a body. The two headers are
the definition header and the redefinable header. The workflow process definition header is
valid for all sub-activities and a workflow process redefinable header might be overridden in
subflows.

Name Description
Definition Header • Meta-information on a process and

• Instance-specific data
• E.g.: Version, temporal unit, estimated duration,

priority
Redefinable
Header

• Meta-information on a workflow process
• Properties can be overridden in subprocesses
• E.g.: author, publication status

Activity Set • Set of activities and transitions
Figure 18: Prefix of a Workflow Process Definition

4.1.1 Workflow Process Definition Header
Attributes of a definition header for workflow processes are listed in Figure 19. The creation
date is assigned to a process definition during its definition and therefore represents the
definition time of a workflow schema. This information can be extracted from the modelling
tool supporting MEMO-OrgML and is not part of the MEMO languages’ specification. The
workflow process’ description can be seen as the description of the top-level process of a
decomposition hierarchy in MEMO-OrgML. The valid-from- and valid-to-attributes allow the
specification of a period of time for the validity of a process definition. Hence, a process
definition can only be used between valid from and valid to (empty string means unlimited
validity). As here is no equivalent concept in MEMO-OrgML we assume an unlimited
validity for all processes.

OrgML (Meta-Data) XPDL:Definition Header
Creation Date (meta) Created (creation date)
Process Description Description
 Duration & Duration Unit
 Limit (vendor-specific)
 Priority
 Time Estimation
 Valid From/To
 Waiting Time
 Working Time

Figure 19: Attributes of a Workflow Process Definition Header

The other attributes only contain information on workflow instances. The duration- and limit-
attribute (the limit has to be interpreted by a specific WfMS and has no meaning in the
context of XPDL) contain an expected duration for the execution of the given workflow-
process using a specific duration unit. The time estimation is an aggregation of waiting- and
working-time as well as the duration. The waiting time corresponds to the time needed for the
preparation of a process’ execution and the working time correlates with the expected
execution time. Those concepts are not part of the MEMO-OrgML and have to be
complemented to a process model.

56 According resources are presented in section 4.2.

 - 26 -

4.1.2 Workflow Process Redefinable Header.
The attributes of a workflow process redefinable header are listed in Figure 20. The meta-
information on the author of a model and its version can be derived from the data available in
the modelling tool.

OrgML (Meta-Data) XPDL:Redefinable Header
Modeller (meta) Author
 Codepage
 Country key
 Publication status
Organisational Unit Responsible(s)
Version (meta) Version

Figure 20: Attributes of a Workflow Process Redefinable Header

The annotation of a codepage has a rather technical reason. The codepage specifies the
character-set used for the presentation of texts. Country keys are specified by the ISO in the
ISO 3166 standard. The publication status indicates whether a process definition under
revision (UNDER_REVISION), released (RELEASED) or in use (UNDER_TEST).
Responsible corresponds to an organisational unit which is responsible for the execution of a
given workflow process. The responsible person can be derived from the organisational unit
in the MEMO-diagram.

4.1.3 Generation of Headers
XPDL-workflow-headers contain information on a workflow process (e.g. author, version),
process-information (e.g. description, responsible) and instance-related information (e.g.
duration, time-estimation). This kind of information is not part of a language specification.
Instead, it can be managed by a modelling tool and then be mapped directly to an XPDL-
based description. Some process information (e.g. priority) is not yet available in MEMO-
OrgML and has to be supplemented with a process’ definition. Instance-specific information
should not be included in a business process modelling language for conceptual modelling. It
might only function as additional information (like a workflow-diagramm for business
processes) for existing business processes on a different level of abstraction.

4.2 Resources, Information and Organisational Units
At first sight, resources seem to be easy to map to workflow participants, workflow
applications and workflow-relevant data. Nevertheless, this task is hampered by some details
regarding the abstractions of resources on the one hand and the concepts given in XPDL on
the other hand. These details are discussed in the following subsections.

4.2.1 Human Resources
According to MEMO-OrgML, a human resource is an abstraction on persons, employees,
roles or other staff-related perspectives. In XPDL, workflow participant “is an abstraction
level between the real performer and the activity, which has to be performed. During run time
these abstract definitions are evaluated and assigned to concrete human(s) and/or
program(s).”57 The mapping of an abstract actor (as given in an XPDL-description) to a
concrete actor (e.g. the user of a WfMS) has to be done by the workflow-management-
system58.

OrgML:HumanResource XPDL:Participant

57 Cf. [Nori02, p. 43]
58 It will be prescinded from a concrete WfMS within this section.

 - 27 -

 Id
name Name
description Description
 Participant Type
 Extended Attributes
 External Reference
attributes
qualification
competenceProfile

Figure 21: Correlation between Human Resources and Participants

As shown in Figure 21, the resource’s properties name and description can be directly
mapped to an XPDL-file. The properties attributes, qualification and competenceProfile
will be neglected because they have no direct correspondence in XPDL. A unique identifier
required by XPDL can be generated in the context of the mapping of OrgML to XPDL. Such
an identifier corresponds to an object identifier in MEMO and the generated XPSL-Id has to
be unique within the XPDL-definition.
The specifications of “participant-type”, “extended attributes” and “external reference” are an
extension to a business process model (modelled using MEMO-OrgML). Alternatives for a
participant type are resources, roles, organisational units, humans and a software system59.
Extended attributes are name-value pairs60 and allow the annotation of system-specific
information for different WfMS-products. The name is used to identify the extended attribute
and the value is an information for a particular WfMS. An external reference is a reference to
an external document providing the specification of a workflow-related entity. Such a
document can for example be a globally available XML-DTD (specifying the structure of a
workflow entity) or a web-services interface-definition (using WSDL). All these extensions
have to be provided by a workflow-specific extension to business-process-models.

4.2.2 Software
The XPDL’s notion of a workflow application declaration mostly corresponds to software
used within a business process. A workflow application represents a software-tool required
for the execution of a workflow. Every application might be invoked by the WfMS and the
XPDL abstracts from concrete implementations. Consequently, applications are declared in an
abstract manner, only naming them in the XPDL-definition. Every application is defined as a
symbolic reference in XPDL which has to be assigned to concrete applications by the WfMS.

OrgML:Software XPDL:Application
 Id
name Name
description Description
 Formal Parameters
 Extended Attributes
 External Reference
systemRequirements
scalability

Figure 22: Correlation between Software and Application

59 Cf. [Nori02, p. 44]
60 Note the difference between resource-attributes and extended attributes: A resource-attribute is a name-type-
pair and an extended attribute is a name-value-pair.

 - 28 -

The resource’s (software) properties name and description can be directly mapped to an
XPDL-document. The properties systemRequirements and scalability will be neglected
because they have no correspondence in XPDL. XPDL requires a unique identifier, which
cannot be expressed in MEMO-OrgML. However, such an identifier could either be explicitly
assigned to OrgML models (which would require a small extension of the language) or
generated within the automatic mapping of OrgML to XPDL. External attributes and an
external reference are equally handled like the same attributes in section 4.2.1. They have to
be complemented using an additional abstraction (regarding workflows). The attribute
“Formal Parameters” correspond to a list of single formal parameters which are specified
using the following properties:

- Id: Identifier
- Data Type: Type of the formal parameter
- Description: Textual description of the formal parameter
- Index: Position in the parameter list
- Mode

o IN: read-only parameter
o OUT: write-only parameter
o INOUT: Parameters used as in- and output parameter

The Id of a formal parameter has to be unique within the namespace of a process.

4.2.3 Information
Regarding business process modelling, the description of information usually corresponds to
the specification of information types which are used within a business process. In contrast to
this, workflow-relevant data is associated with variables containing concrete information61.
Such variables are generally referenced by a unique name (as identifier) and correspond to a
given type.

OrgML:Information XPDL:Data
 Id
name Name
description Description
typeDescription Data Type
 Extended Attributes
 Initial Value
 Is Array
 Length

Figure 23: Correlation between Information and Data

The appropriate Id for a workflow specification might be generated automatically. Name,
description and data type can directly be resolved from the corresponding attributes of the
MEMO-process model (cf. Figure 23). Extended attributes have to be handled the same way
as extended attributes of human resources and applications. Additionally, an initial value
might be assigned to a variable. The maximum length and the property of being a collection
can be determined by the attributes Is Array (the variable is a multi-valued type) and Length
(upper bound of a sequence).

4.3 Processes
MEMO-OrgML supports several different kinds of process types, which have to be mapped to
appropriate (i.e. similar) concepts given in the XPDL. Regarding MEMO-OrgML, there are

61 The terms ‘data’ and ‘information’ are used synonymously within this report.

 - 29 -

concepts like composed, manual, automated and semi-automated processes. In XPDL, there
are generic and block activities. Conceptual relationships between MEMO-OrgML-processes
and XPDL-activities are subject to this section.

4.3.1 Manual Processes
Manual processes (MEMO-OrgML) are executed only by human resources without any IT-
support. Hence, those processes seem to be irrelevant for the execution of a workflow schema.
Nevertheless, there are several different alternatives regarding the mapping of manual
processes to XPDL-schemas.

<Trade
Company>

Repair Central
Heating

- 2 -

<Trade
Company>

Manage Order
- 1 -

<Trade
Company>

Manage Invoice
- 3 -

Figure 24: Example for manual processes

Alternative 1: Manual Processes are not mapped to workflow activities
This alternative ignores every manual process in the context of workflow management.
Consequently, every manual process has no counterpart in the XPDL-based specification. The
basic assumption is the fact, that a manual process only has to be executed by a human being
and no IT-support is involved (say: a WfMS will not be needed). With respect to the example
given in Figure 24, only the processes No. 1 and three are mapped to the XPDL-based
specification and the process No. 2 will be dropped.

<Trade
Company>

Manage Invoice
- 3 -

<Trade
Company>

Manage Order
- 1 -

?

Figure 25: Example for alternative 1

As shown in Figure 24 the execution of a virtual order management process consists of the
management of an incoming order, the execution of the order and the management of the
invoice. In the original process in Figure 24 the termination of process No. 2 triggers the
beginning of process No. 3. According to the simple mapping strategy (ignoring manual
processes) information on the change of state will be neglected. The process model given in
Figure 25 leaves out the manual process No. 2 in Figure 24.

Alternative 2: Mapping of manual processes to route activities
As stated in section 3.2.2, a route activity is an activity without an implementation. It has
neither a performer nor an application. It also has no effect on the workflow or workflow-
relevant data (as well as application data). Keeping these restrictions in mind a manual
process can be mapped to a route-activity if its execution has no effect on the succeeding
processes and the human resource has no equivalent in the WfMS. This alternative is tainted
with the fact that the rout-activity’s original purpose results from the modelling of cascading
splits and joins.

Alternative 3: Mapping of manual Processes to workflow activities
Alternative No. 2 comprises the mapping of manual processes to workflow activities. Every
manual process will be mapped to an activity with a human actor and no applications.
Consequently, manual processes correspond to some kind of dummy-activities in a workflow-

 - 30 -

schema. Such a dummy-activity only serves for the recognition of the completion of a manual
process. The termination of a manual process might trigger the start of a following process.
As an effect, every manual activity has to be to be confirmed in the WfMS.

If alternative 1 has been selected there will be no mapping of a manual process to a workflow
activity. All manual processes as well as their associated transitions will be lost in the
workflow model. Choosing alternative 2 will at least keep the information about the existence
of a manual process in the business process model. But the human resource responsible for
the execution of a manual process can not be associated with a route activity. The last
alternative allows the mapping of the process itself and according participants (human
resources) to the workflow model. The mapping corresponding to alternative 3 is shown in
Figure 26.

OrgML:Manual Process XPDL:Generic Activity
Id Id
name Name
description Description
Organisational Unit Performer
 Transition Restrictions

- Join: AND, XOR
- Split: AND, XOR

Figure 26: Mapping of manual processes

The Id will be generated out of the manual process’ identifier and the attributes name and
description can be directly mapped from the process definition to the XPDL-document. The
organisational unit of a manual process can be mapped to the performer of the workflow
activity. The transition restriction specifies whether all incoming transitions (Join) are
synchronised (AND) or alternatives (XOR) as well as all outgoing transitions (Split) are
parallel (AND) or alternative (XOR)62. This information is determined by the kind of in- and
outgoing arcs of the business process models. A parallel split will be mapped to an AND-split
and an alternative split to an XOR-split. Analogously, a parallel join is mapped to an AND-
join and an alternative join to an XOR-join. Information which is not included in the business
process model but necessary for a workflow activity’s specification63 is shown in Figure 27.

Attribute Description
Deadline Specification of a deadline and an action to be taken if it is reached.
Documentation Identifier of an external documentation file (e.g. URL or a filename).
Start Mode Manual Mode: The user has to start the activity manually (indicating the

beginning of his work)
Finish Mode Manual Mode: The activity has to finishes according to a user’s

interaction (indicating the end of his work).
Implementation No: Implementation by manual procedures
Icon Reference to an external file containing an image for the representation

of an activity.
Limit Expected maximum duration for the execution of a process (vendor-

specific)
Priority A value describing the initial priority of a process.
Simulation
Information

Estimations for the simulation of an activity.

62 See also section 3.2.2.
63 Words given in a bold style correspond to concrete values.

 - 31 -

Figure 27: Attributes of a manual activity64

As most of the workflow-relevant data is not available in a business process model, there has
to be an extension to those models. We emphasise a so called workflow-diagram for every
business process which has to be mapped to a workflow schema. This diagram contains all
additional information for the implementation and simulation of business processes in a
workflow-environment.

4.3.2 Semi-Automated Processes
Regarding the MEMO-OrgML, semi-automated processes are executed by human resources
using IT-related resources (soft- and hardware). Hence, semi-automated processes rely on
human and software-technical resources. Those kinds of processes can be mapped to generic
activities. Route activities as well as block activities have no implementation and correspond
to routing conditions or the execution of an embedded flow. A route activity is no real
activity. It cannot be associated with a concrete task and exists only for reasons regarding
control flow in workflow applications. A block activity has no inherent implementation as
such an activity only calls an embedded activity set.
The mapping of general information on a semi-automated process is equivalent to the one of a
manual process as given in section 4.3.1 (cf. Figure 26). Most workflow-specific information
can be generated using a workflow-diagram. Nevertheless, Start- and Finish-Mode as well as
the process’ implementation are determined

Attribute Description
Start Mode Manual Mode: The user has to start the activity manually (indicating the

beginning of his work)
Finish Mode Manual Mode: The activity has to finishes according to a user’s

interaction (indicating the end of his work).
Implementation Tool: Implementation is supported by an applications

Figure 28: Attributes of a semi-automated activity65

4.3.3 Automatic Process
An automatic process is executed without the intervention of a human participant.
Nevertheless, an organisational unit can be assigned to an automatic process, too. That means
that it is responsible for the execution of this process. Basically, the mapping of automated
processes can be handled like a manual process (cf. Figure 26). In contrast to a manual or
semi-automatic process the assignment of a performer has no effect on the execution of an
automatic process.

Attribute Description
Start Mode Automatic: Triggered by the system.
Finish Mode Automatic: Triggered by the system.
Implementation Tool: Implementation is supported by an applications

Figure 29: Attributes of a automatic activity66

4.3.4 Aggregated Process
Aggregated processes in MEMO-OrgML have no inherent implementation but consist of
other processes. A block-activity in XPDL corresponds to a set of sub-activities and has no

64 Source: [Nori02, p.31]
65 Source: [Nori02, p.31]
66 Source: [Nori02, p.31]

 - 32 -

own resources. We will not use subflows, because every subflow contains its own set of
performers and tools. As there is no support of name-spaces (in OrgML) we will not support
the concept of sub flows. Hence, every aggregated process will be mapped to a block-activity
and all contained processes are collected into an activity set.

4.4 Control Flow and Events
The type of control flow is determined by the workflow activity’s definition. All outgoing
transitions of an activity are either parallel (AND) or alternative (XOR). Equally like, every
join (incoming transitions) is either a parallel or alternative synchronisation. The specification
of joins and splits is associated with a process’ definition.
Events do not exist as specific concepts in XPDL. Hence, there is no direct correspondence
between events in a business process model and a workflow-schema. Nevertheless events
given in a business process model can be used for the definition of conditions on the firing of
a transition. As given in Figure 30 an event’s name and description can be mapped to an
XPDL-description. The Id can be constructed from an event’s Id and context. The condition
has to be complemented to the activities description. Preceding and succeeding activities can
be derived from the business process model.

OrgML:Event XPDL:Transition Information
Id Id
Name Name
Description Description
 Condition
 From (set of activities)
 To (set of activities)

Figure 30: Transitions

4.5 Data
Workflow-relevant data has to be specified in XPDL. There are two general usages of
information in a workflow’s context: the definition of a variable and its usage. The definition
of an information-related variable consists of its name and type. The usage refers to its name
and assignment of new values.

OrgML:Information XPDL:Data
 Id
name Name
description Description
dataType Data type
 Initial Value

Figure 31: Mapping of data

5 Prototypical Tool-Support
The mapping of business process models to XPDL-documents is the basis for the
development of a prototype for software-generation. Goal of this development has been a tool
for the generation of a software-system basing on business process models. The underlying
vision is the automatic generation of software (i.e. executable programs) out of models. To
achieve this goal, we used the following approach:

 - 33 -

1.) Creating business process models using MEMO-OrgML
2.) Extending the business process models by workflow-relevant information
3.) Mapping the BPM to an XPDL-document
4.) Executing the processes on the basis of the XPDL-document using a Workflow-

Engine
a. Importing the XPDL-description into the WfMS
b. Customisation of the WfMS

The following tools were used to achieve this goal:

- MetaEdit+ 4
- Shark Workflow Engine by Enhydra

5.1 Implementation of MEMO-OrgML using MetaEdit+
We implemented a MEMO-OrgML modelling tool using the meta-modelling-tool MetaEdit+.
MetaEdit+ is a tool for the development of modelling tools and currently available in version
4. Basic concepts of MetaEdit+ are objects, relationships, roles and diagrams. Objects
represent the nodes within a diagram and relationships the edges between objects. Roles
specify additional information on the appearance of an object in a given relationship67. Proper
combinations of objects via relationships using roles are defined in diagrams. The two most
important diagram types (MEMO-OrgML) have been implemented:

a) Decomposition of processes
b) Process models

5.1.1 Process Decomposition Diagrams
A process-decomposition-diagram expresses decomposition-relationships between processes.
Every composed process consists of several elementary and/or composed processes. Every
composed process has the role of a composite in the context of decomposition. Every
subordinated process (with respect to a decomposition-relationship) plays the role of a part. A
part can either be another composed process or an elementary process. A composed process
used in a process-decomposition-diagram can be further specified by a process-model-
diagram (cf. section 5.1.2). Such a diagram can be connected to a given model-element by a
so called explosion. An explosion is a concept given in MetaEdit+ and allows for the
connection of an object in a diagram to another diagram. This concept can be used to connect
a composed process with a process-model-diagram.
An example for a decomposition diagram is given in Figure 32. The process Invoice
Processing (Id: Pay) is a composite consisting of the two processes Check Invoice (Id:
Pay_1) and Pay Liability (Id: Pay_2). Pay_2 is a composite and Pay_2.1 and Pay_2.2 are
its parts. The control flow of process Pay_2 is shown in Figure 33 and explained in the
following section 5.1.2.

67 The concepts of MetaEdit+ are not further discussed within this introduction. We will rather refer to specific
concepts while presenting the implementation of MEMO-OrgML.

 - 34 -

Figure 32: Example Process Decomposition Diagram as realised in MetaEdit+

The following concepts are used in a decomposition-diagram:

- Objects:
o Composed Process
o Elementary Process

 Manual process
 Automated process
 Semi-automated process

- Relationships
o Decomposition

- Roles
o Composite
o Part

- Explosions
o Composed Process Process-Model-Diagram

Every composed process participating in a decomposition relationship can play the role of a
composite. Every composed and every elementary process can play the role of a part with
respect to a decomposition in relation to a composite. A composed process can be associated
with a process-model-diagram.

 - 35 -

5.1.2 Process Model Diagrams
A process-model-diagram consists of events and processes and specifies logical/temporal
relationships between business processes68. Possible control-flow-types are the sequence,
alternative and concurrency. An example for a process-model-diagram is given in Figure 33.
This diagram represents the control flow of the parts of process Pay_2 presented in the
previous section 5.1.1. The process is started by event ePay_7 which results in the execution
of process Pay_2.1. After its completion either the event ePay_12 (with a probability of
10%) is fired or event ePay_14. Event ePay_12 triggers the execution of process Pay_2.2
which in turn fires -- after its termination -- event ePay_14.

Figure 33: Example Process Model Diagram

Objects used in a Process Model Diagram comprise all kinds of processes and all event-types
(refer to sections 2.2.1 and 2.2.2). They are connected by all types of control-flow given in
MEMO-OrgML (refer to section 2.2.3). The most important objects are listed below:

- Objects:
o Composed Process
o Elementary Process

 Manual process
 Automated process
 Semi-automated process

o Event
 Start
 Stop
 Incoming Message
 Information Change

- Relationships
o Sequence
o Alternative Split and Join
o Parallel Split and Join

- Roles
o Predecessor
o Successor

Objects are connected by the Sequence-, Alternative- or Parallel-relationships. The starting
object of such a relationship plays the role of a predecessor and the ending object the one of a
successor. There are no explosions defined between objects of a process-model-diagram and
other diagram types. Example: The connecting arc between event ePay_7 and process

68 These relationships have been presented as ‘control flow’ in section 2.2.3.

 - 36 -

Pay_2.1 in Figure 33 defines a sequence between the objects and has the event as
predecessor and the process as successor. Nevertheless, not all connections between arbitrary
objects are useful (e.g. a sequence-relationship between a start- and a stop-event). Hence,
there are some restrictions on the design of a process-model-diagram:

Start
- A start-event has no predecessor.

Stop
- A stop-event has no successor.

Incoming message
- An incoming-message-event has no predecessor and one or more processes as

successor.
Sequence

- Every event is followed by a process and every process is followed by an event
AND-Split

- One event is followed by several (at least two) processes
AND-Join

- One process is preceded by two or more events
XOR-Split

- One process is followed by several (at least two) events
XOR-Join

- One event is preceded by two or more processes

5.2 Extending Business Process Models with Workflow-specific
information

As shown in sections 2.2 and 3, there are many differences between MEMO-OrgML and
XPDL. In order to map a business-process-model to an XPDL-document, missing information
has to be added to the business-process-model. Two diagram-types have been added to
achieve this goal: workflow-specification-diagram and workflow-activity-specification-
diagram.

5.2.1 Workflow Specification Diagram
A workflow-specification-diagram supplements a business-process-model with workflow-
related abstractions. This diagram-type contains objects of the following types:

Workflow Process
A workflow-process contains a reference to a corresponding business-process. Usually, the
corresponding business process is a composed process which in turn consists of other business
processes and their control-flow. Business processes are mapped to XPDL-activities
according to the rules given in section 5.3. Additionally, a link to the documentation of a
business process and the annotation of extended attributes is possible.

Workflow Participant
A workflow-participant is an XPDL-specific concept and determines the actor of a workflow.
Such a participant is associated with an organisational unit in MEMO-OrgML and is
supplemented with extended attributes and a participant-classifier. Possible classifiers are the
ones given in section 3.3.1.

Workflow Application
An application is the specification of a workflow-related tool. Such a tool can either be an
internal procedure or an external application (refer to section 3.3.2). The application-object in
a workflow-specification specifies a unique identifier, name and formal parameters of a
workflow-application.

 - 37 -

Workflow Information
A workflow-information-object specifies information used in a workflow and can be seen as a
variable. This specification consists of a unique identifier, a name and a data-type as well as a
default-value and other XPDL-related fields (refer to section 4.2.3).

Figure 34: Example Workflow-Specification-Diagram

An example of a workflow-specification-diagram is given in Figure 34. This diagram is the
workflow-specification of process Pay presented in section 5.1.1. This association is
established by the top-left box called Workflow Process representing the business process
Pay. To the right of this box is a link to the process’ documentation and a list of extended
attributes (empty in Figure 34). There are two workflow-participants and an application
(Function) defined for the workflow. The Sales-participant corresponds to the organisational
unit Sales and has as type Organisational_Unit. The participant called mail corresponds to a
mail-sender and is a software-system for the sending of mails. Consequently, there is also an
application for the delivery of e-mails. Every information (variable) used in a workflow has to
be specified in a workflow-specification-diagram. According to the example given in Figure
34 there are three variables containing the e-mail-address of a customer (type String), a
default-text for the notification of a customer (String) and a Boolean variable indicating
whether a message has been send or not.

5.2.2 Workflow Activity Specification Diagram
A workflow-activity-specification-diagram is associated with an elementary process (using an
explosion). The workflow-activity-specification describes the workflow-application as well as
actual parameters used for the execution of such a process. Generally speaking, a workflow-
activity-specification-diagram associates a process with an application and the assignment of
actual parameters. Hence, an activity-specification associated with a process binds an
application to workflow information. Additionally, it is specified whether an application is an
internal procedure or an external tool.

 - 38 -

Figure 35: Example Workflow-Activity-Specification

The example given in Figure 35 assigns actual parameters to a procedure for the sending of e-
mails (tool called: sendMail). Corresponding data are the e-mail-address of customer, a
notification text and an internal Boolean status variable. The Boolean variable is set to true if
the mail has been sent and false otherwise.

5.2.3 Summary of Business- and Workflow-Diagrams
The actual implementation of the mapping of business process models to a running
application consists of four different diagram types. A process-decomposition-diagram
specifies the relationships between composed and elementary processes. Every composed
process can be further specified by a process model and every elementary process can be
further specified by workflow-relevant data. The relationships between the different kinds of
diagrams used for the mapping of business process models to workflows are shown in Figure
36.

[1..1] Workflow Process
[1..N] Workflow Participant
[0..N] Workflow Data
[0..N] Workflow Application

Workflow Specification

[1..N] Composed Process
[1..N] Elementary Process

Process Decomposition

Composed Process
Elementary Process
Control Flow

Process Model

Actual Parameter

Workflow Activity Specification
Figure 36: Structure of Diagram and Object Types

Root-diagram for the generation of an XPDL-conformant workflow-specification is a
workflow-specification diagram. It contains all participants (one or more), workflow-data
(zero or more) and applications required (zero or more) for the workflow-process. The
workflow-specification-diagram also contains a reference (realised with an explosion) to a
process-decomposition containing all (sub-)processes used within the given workflow
process. The root process of the decomposition-hierarchy (mandatory) represents the
workflow process itself and additional decomposed processes are possible. At least one
elementary process has to be assigned to each composed process in the decomposition-

 - 39 -

diagram using a decomposition-relationship. Additionally control flow of every decomposed
process has to be specified using a process-model-diagram. This diagram has to include all
sub-processes (connected via a decomposition-relationship) of the given composed process.
Every elementary process in the process-decomposition-diagram has to be further described
using a workflow-activity-specification-diagram. This diagram contains the binding of
workflow-relevant data (actual parameters) to the formal parameters of a workflow-
application.

Example:
The workflow-specification-diagram for process 0, Notify Customer in is shown in Figure
36. The diagram contains the workflow-process’ participants, data and applications. The
associated process-decomposition-diagram is given in Figure 37, containing the process 0
itself as well its sub processes 1 and 2.

Figure 37: Decomposition of Workflow-Process 0

Figure 38 shows the process-model-diagram according to process 0. The tool used for the
execution of process 2 SendMail is specified in Figure 35.

Figure 38: Process-Model of Workflow-Process 0

5.3 Mapping of OrgML-Models to XPDL-Documents
The mapping of MEMO-OrgML-models to XPDL-conformant workflow-definitions is
realised using the code-generation mechanisms of MetaEdit+. MetaEdit+ includes a language
for the specification of mappings between internal models and external textual specifications.

 - 40 -

5.3.1 Workflow Process Specification Headers and Packages
Every workflow-process-specification is mapped to one XPDL-file. The header of the XML
process-definition-language-based file starts with the XML-header (determining the XML-
version and character-encoding):

The WfMC recommends the generation of at least one package for each XPDL-file69. The
generic default-package-header containing meta-information ob the XPDL-definition is given
as follows:

This generic header specifies XML-related information like the XML-document-type-
definition (http://www.wfmc.org/2002/XPDL1.0) as well as context-specific information like
an ID (0) and a package’s name (ECOMOD Process).

Following the generic header, a specific package header is written to the output-file. This
header includes the version of the corresponding XPDL-specification, a vendor-id and the
creation-date of the file.

The header-specification is followed by the annotation of a conformance class, a script type,
type declarations, participants, applications and data fields. The conformance class might be
one of the following70:

Conformance Class Description

NON_BLOCKED There is no restriction on the network structure.
This is the default-value.

LOOP_BLOCKED The network structure is restricted to proper nesting
of loops.

69 Cf. [Nori02, p. 19]
70 Cf. [Nori02, p. 22]

<PackageHeader>
 <XPDLVersion> 1.0</XPDLVersion>
 <Vendor> IWVI, UNi Koblenz </Vendor>
 <Created>'; 'April 2004'; '</Created>
</PackageHeader>
<ConformanceClass GraphConformance = "NON_BLOCKED"/>
<Script Type="text/javascript" />
<TypeDeclarations/>
<Participants/>
<Applications/>
<DataFields/>

<?xml version="1.0" encoding="UTF-8"?>

<Package xmlns="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:iwvi="http://iwvi.uni-koblenz.de/workflow"
 xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0
 http://wfmc.org/standards/docs/TC-1025_schema_10_xpdl.xsd"
 Id="0" Name="ECOMOD Process">

 - 41 -

FULL_BLOCKED The network structure is restricted to proper nesting
of SPLIT/JOIN and loops.

The conformance-class NON_BLOCKED is chosen for the mapping of process models to
XPDL because it is the least restricting. The script-field has been filled with the entry
‘javascript’ as an example. This entry will never been used within the XPDL-mapping. All
other fields regarding packages will be left open. Those fields will never be used during the
mapping and afterwards. Hence, no participants, applications or data will be declared on
package-level.

5.3.2 Workflow-Specification
Every generated XPDL-file consists of exactly one package-definition and one workflow-
definition included in this package. This workflow-definition consists of the following sub-
definitions:

- data-fields
- participants
- applications
- activity-sets
- activities (cf. section 5.3.3)
- transitions (cf. section 5.3.4)

The specification of data-fields, participants and applications is derived from the workflow-
specification diagrams. Afterwards, the activity-sets are generated basing on the workflow-
specification-diagram. There will be an activity-set for every composed process in the
decomposition-diagram (except for the root-process). The root-process is mapped to the
package specification and the workflow-process-specification. Every composed process
which is part of a decomposition of the root process will be mapped to an activity set. Each
activity-set contains the herein included processes as well as their transitions. According to
Figure 32 the process Pay will be mapped to a package- and workflow-process-definition.
The herein contained process Pay_2 will be mapped to an activity-set.

5.3.3 Activities
After the generation of the headers, the workflow-process’ data-fields, participants and
applications as well as activity-sets, MEMO-OrgML processes are mapped to workflow-
activities. Every process (composed or elementary) will be mapped to exactly one activity
using the direct mapping given in Figure 26 and following the rules given in Figure 39. A
manual process is performed by a human being and requires no IT-related resource. Hence,
the corresponding activity-specification requires a workflow-participant and does not allow
the annotation of a workflow-application. The workflow-activity has to be started manually
(indicating the beginning of the execution of the manual process) and finished manually (end
of process) as well. A semi-automated process also requires a participant but a workflow-
application has to be specified, too. It has to be started and finished by the human participant.
An automated process will be started and terminated automatically (by the WfMS). It does not
necessarily need a participant (it can be annotated) but requires a workflow-application. A
block-activity contains a set of activities (an activity-set) and does not require a participant or
an application. Hence, a composed process is mapped to a block activity (as well as to an
activity set containing its subsequent processes).

 - 42 -

Process Type (MEMO-OrgML) Specification in XPDL
Manual process Participant: required

Application: not applicable
Start-mode: manual
Finish-mode: manual

Semi-automated process Participant: required
Application: required
Start-mode: manual
Finish-mode: manual

Automated process Participant: not required
Application: required
Start-mode: automatic
Finish-mode: automatic

Composed process Participant: not required
Application: not required
Start-mode: not applicable
Finish-mode: not applicable

Figure 39: Mapping of processes to activities

Control flow between activities is specified in XPDL using transitions (discussed in the
following section 5.3.4) and transition-restrictions assigned to a workflow-activity. If a
process is preceded by an alternative join the join-transition-restriction of the corresponding
workflow-activity is set to XOR. If it is preceded by a parallel join its join-transition-
restriction is set to AND. Analogously, the activity’s split-restriction will be set to XOR/AND
if the process is followed by an alternative/parallel split. Note that the join- and split-types
regarding a business process cannot always be determined by its directly preceding and
following relationships (see the following section).

5.3.4 Transitions
A transition between two workflow activities corresponds to a followed-by relationship. A
transition starting in activity A and ending in activity B means, that activity B can be started
after the termination of activity A. Information about the kind of control-flow is not part of a
transition-specification. Nevertheless it will be part of the activities’ specification. Another
conceptual difference between process-models in MEMO-OrgML and XPDL-activities is the
absence of events in a workflow-specification. The mapping of MEMO-OrgML’s control-
flow to XPDL-transitions will be explained using an abstract example in Figure 4071.This
example consists of four processes and three events. The process called A is followed by
event No. 10 which in turn results in the parallel (or concurrent) execution of processes B and
C. The termination of process B is connected to the occurrence of event No. 11 and the one of
C to the occurrence of 12. If both events occurred (parallel join), process D can be started.

71 Please note that we used a different graphical notation for parallel splits and joins compared to the definition
of OrgML presented in section 2.2.3.3. MetaEdit+ does not allow the differentiation between relationship types
by different routings of lines.

 - 43 -

Figure 40: Example Containing a Parallel Join and Split

The generation of transition bases on a simple algorithm: Every MEMO-event will be mapped
to at least one transition. Their will be one transition for every combination of starting (from)
and ending (to) points. Event No. 10 given in Figure 40 will for example be mapped to two
transitions: One transition from A to B and one from A to C. The unique identifier of each
transition is generated by concatenating the identifier of the preceding process, the event’s id
and the identifier of the succeeding process. The information about the type of control-flow is
associated with the preceding process. The split-transition-restriction of process A is set to
AND. The events 11 and 12 will be mapped to one transition each and the join-transition-
restriction of process D is set to AND.

5.4 Configuration of the WfMS
An open-source workflow-engine72 implemented in the programming language Java has been
used for the execution of the XPDL-files. The Shark-engine fully supports the XPDL-standard
of the WfMC and provides the association of workflow-participants with concrete users
(section 5.4.1) as well as the association of workflow-applications (in XPDL) with procedures
(section 5.4.3).

5.4.1 Mapping of Participants to users
Workflow-participants can be declared using the XPDL-concepts presented in sections 3.3.1
and 5.2.1. Different types of participants are

- Resource (also: resource-set; a set of resources)
- Role
- Organizational_Unit
- Human
- System

The Shark-engine provides a mechanism for the association of participants with specific users
of the WfMS. This is applicable if the type of the participant is resource (resource-set), role or
organisational unit. Depending on the context, the role of an escalation coordinator for
example might be assigned to a specific user and reassigned to another user after the
reorganisation of the company. If a participant cannot automatically be mapped to a Shark-
user, the activity will – per default – be assigned to the administrator. If the type of participant

72 The workflow-engine is called Shark and has been developed by Enhydra. It is available on the web-page of
enhydra: http://shark.enhydra.org

 - 44 -

is Human the participant will be mapped to a WfMS-user with the same name. For example:
A workflow-participant of the type Human and with the name jjung will be associated with
the local user (say: in the Enhydra Shark-engine) named jjung. If the participant’s type is
System, the actor is assumed to be a software-system and the activity is performed by a
workflow-application. Hence, the association between workflow-participants and WfMS-
users generally has to be defined by an administrator. Such an association has to be omitted
for human participants and software systems. In the latter cases an automatic assignment is
provided by the workflow-engine.

5.4.2 Updating Workflow-Data
The XPDL-standard provides no mechanism for the manipulation of workflow-relevant data
except for the execution of workflow-applications. The Shark-engine allows for the
manipulation of data by using extended attributes in the context of workflow-activities. The
relevant extended attributes are listed in Figure 41. The first attribute specifies data which can
be manipulated in a workflow-activity and the second one only allows for the display of a
variable’s value. The symbolic identifier <workflow-data> has to be replaced by a specific
workflow-data’s name.

attribute-name attribute-value
VariableToProcess_UPDATE <workflow-data>
VariableToProcess_VIEW <workflow-data>

Figure 41: Extended Attributes of the Shark-Engine

5.4.3 Mapping of Workflow-Applications to Procedures/Applications
A workflow-application is specified in an XPDL-file by an application-declaration (cf. section
3.3.2). Such a specification only includes a symbolic reference to a concrete application.
Generally, the WfMC distinguishes between a procedure (an application implemented within
the WfMS) and an application (an external piece of software). The current version of the
Shark-engine only supports internal procedures implemented in Java. The association of a
workflow-application to a procedure is provided by the Shark-engine. Every application
included in an XPDL-specification has to be associated with a Java class which is under the
control of the Shark-engine. Such a Java-class has to be placed in the storedprocedure-
directory of the Shark-installation and has to implement a public static method called execute
without a return-parameter. Examples for prototypical workflow-applications are given in the
following section 5.4.4.

5.4.4 Example-Implementation of Prototypical Workflow-Applications
This section presents some prototypical implementations for workflow-applications. In XPDL
applications are only specified on an abstract level. Such a description mainly consists of a
symbolic name and a list of formal parameters. There is no reference to a specific application.
The mapping of such an application definition to a concrete application has to be done using
features of the used WfMS. The Shark-engine supports the integration of Java-based
applications. Prototypical implementations including the sending of e-mails, the composition
of textual documents as well as the editing of existing documents have been developed for the
generation of executable software on the basis of business process model.
A commonly used feature of corporate information systems is the notification of a customer
sending an e-mail. A Java-based application using an external mail-tool has been developed
for automatically sending an e-mail message to a customer after the termination of a process.
The XPDL-specification of this application is presented in Figure 42, its implementation in
Figure 43 and the mapping of workflow-data to formal parameters in Figure 44.

 - 45 -

Figure 42: XPDL-specification of the e-mail-sender

The XPDL-code in Figure 42 defines the abstract e-mail-application including its parameters.
Id and name of the application are given in the first line. The set of formal parameters is listed
between <FormalParameters> and </FormalParameters>. Every formal parameter is described
by its identifier, an index, a mode and a data-type. The name is a character string defined by
the user. The index is the position of the parameter in the parameter-list. The mode specifies
whether the parameter is passed from the WfMS to the application (IN), returned from the
application (OUT) or both (INOUT). The data-type might of any type defined by the WfMC.
We currently only support the basic types (String, Float, Integer, DateTime, Boolean) given
by the WfMC.
The implementation of the e-mail-sender is listed in Figure 43. The Shark-workflow-engine
assumes a Java-class with a class-method called execute as the implementation of a
workflow-application. The parameter-list of the method must correspond to the formal
parameter-list of the XPDL-specification of the workflow-application. The data-type of the
parameters has to be Any meaning an arbitrary data type. The parameters are assigned to
typed attributes using mapping methods of the Any-type. The prefix of those methods is
extract and there are two examples (extract_string()) in Figure 43. After the definition of
default-parameters and the extraction of concrete values from the parameters, a command-
line-string for the execution of a mail-sender is constructed. This mail-tool is not implemented
using Java but a Windows command-line tool. Hence, it cannot directly be started from a
Java-class. The class Runtime is used to call the application and the Java-based workflow-
application will wait until its termination. After the execution of the tool a Boolean value
indicating the successful or unsuccessful sending of the mail is inserted in the OUT-
parameter.

 <Application Id="1" Name="SendMail">
 <FormalParameters>
 <FormalParameter Id="receiver" Index="0" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="text" Index="1" Mode="IN">
 <DataType>
 <BasicType Type="STRING"/>
 </DataType>
 </FormalParameter>
 <FormalParameter Id="isSent" Index="2" Mode="OUT">
 <DataType>
 <BasicType Type="BOOLEAN"/>
 </DataType>
 </FormalParameter>
 </FormalParameters>
 <ExtendedAttributes>
 </ExtendedAttributes>
 </Application>

 - 46 -

Figure 43: Implementation of an E-Mail-Notification

The assignment of workflow-data to formal parameters of an e-mail-application is shown in
Figure 44. The XPDL-excerpt is part of the specification of the process regarding the e-mail-
based notification of a customer specified by process No. 2 shown in Figure 37. The ordering
of actual parameters determines the mapping to a formal parameter with an index
corresponding to the actual parameter’s order.

Figure 44: Mapping of actual parameters to an application

 <Implementation>
 <Tool Id="1" Type="PROCEDURE">
 <ActualParameters>
 <ActualParameter>CustomerEMail</ActualParameter>
 <ActualParameter>NotifyText</ActualParameter>
 <ActualParameter>isSent</ActualParameter>
 </ActualParameters>
 </Tool>
 </Implementation>

package wfmapps;

import java.io.IOException;
import org.omg.CORBA.Any;
import org.omg.CORBA.BAD_OPERATION;

public class WfSimpleMailSender {
 public static void execute(Any aReceiver, Any aText, Any isSent){
 try {
 /*Default parameters:
 * host: mailserver for sending mails
 * from: email-address of the sender
 * name: name of the sender
 * subj: subject*/
 String host = "mailhost.uni-koblenz.de";
 String from = "ecomod@uni-koblenz.de";
 String name = "ECOMOD WfMS";
 String subj = "Message from ECOMOD WfMS";

 /*Passed parameters:
 * receiver: email-address of the receiver
 * text: message body*/
 String receiver = aReceiver.extract_string();
 String text = aText.extract_string();

 //Construct command-line for external mail-tool
 StringBuffer command = new StringBuffer("c:\\xpdl\\apps\\mail\\netmailbot");
 command.append(" -to "); command.append(receiver);
 command.append(" -from "); command.append(from);
 command.append(" -fromfriendly "); command.append("\""+name+"\"");
 command.append(" -subject "); command.append("\""+subj+"\"");
 command.append(" -server "); command.append(host);
 command.append(" -body "); command.append("\""+text+"\"");

 //Call external mail-tool
 Runtime rt = Runtime.getRuntime();
 rt.exec(command.toString());
 /*The mail is assumed to be sent
 * if no error occured*/
 isSent.insert_boolean(true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

 - 47 -

6 Summary and Future Work
This research report presents one possible implementation for the generation of an
information system out of process models. The implementation bases on the mapping of
business process models to a workflow model and the appropriate configuration of a WfMS.
The overall vision including used software and corresponding documents as well as languages
is shown in Figure 45. MetaEdit+ has been used for the modelling of business processes
(using MEMO-OrgML) and their mapping to workflow-descriptions (using XPDL). The
Shark workflow-engine uses such a workflow-description for the execution of workflows.
Additionally, users have to be managed and associated with workflow-participants inside the
Shark-workflow-engine. Java-applications have to be developed and linked to workflow-
applications in the workflow-engine, too.

Process Model Workflow Model

MetaEdit+

C
re

at
e

Generate

MEMO-OrgML XPDL

Workflow
Participants

Workflow
Applications

Java

Shark
Workflow
Engine

Shark

Figure 45: From process models to information systems

The approach presented in this research report is currently used and evaluated in the
ECOMOD-project. ECOMOD73 (E-COmmerce MODelling) aims at providing reference
business process models for small and medium enterprises in the area of e-commerce and the
generation of e-business-applications basing on these models. The reference process models
will be modelled and managed using MetaEdit+. After selecting some of these generic
processes for an e-commerce-application, these processes have to be configured for the
special needs of a given company and mapped to XPDL using MetaEdit+. The Shark-WfE74
will be pre-configured for the reference process models containing pre-defined actors (generic
WfMS-users) and their mapping to the reference models’ workflow-participants. There will
be several Java-classes representing the concrete implementation of the workflow-
applications of the generic business process models.

7 Acknowledgments
This research has been kindly funded by the German Research Community (DFG: Deutsche
Forschungsgemeinschaft) as part of the ECOMOD project at the University of Koblenz.

73 Be related to [FrLa04a] and [FrLa04b] for further information about the project.
74 Workflow Engine

 - 48 -

Abbreviations
BPM Business Process Modelling
DTD Document Type Definition
IT Information technology
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
MEMO Multi-Perspective Enterprise Modelling
Wf Workflow
WfE Workflow Engine
WfM Workflow Management
WfMC Workflow Management Coalition
WfMS Workflow Management System
WfS Workflow System
XML eXtensible Markup Language
XPDL XML Process Definition Language

 - 49 -

References
[Baum96] Baumgarten, B.: ”Petri-Netze: Grundlagen und Anwendungen.” Heidelberg,

Berlin, Oxford: Spektrum Akademischer Verlag, 2. Auflage, 1996
[BeJo01] Bergholtz, M.; Johannesson, P.: ”Validating Conceptual Models – Utilising

Analysis Patterns as an Instrument for Explanation Genertion.” In:
Bouzeghoub, M. et al. (Eds.): NLDB 2000, LNCS 1959, Springer, 2001, pp.
325-339

[Böhm00] Böhm, M.: “Entwicklung von Workflow-Typen: Ein Leitfaden der
methodischen Anwendungsentwicklung am Beispiel ausgewählter Workflow-
Aspekte.” Berlin et al.: Springer, 2000

[CKO92] Curtis, B.; Kellner, M.I.; Over, J.: “Process Modelling.” In: Communications
of the ACM, September 1992/Vol. 35, No. 9, pp. 75-90

[EJLT99] Eertink, H.; Janssen, W.; Luttighuis, P.O.; Teeuw, W.; Vissers, C.: ”A
Business Process Design Language.” In: Wing, J.; Woodcock, J.; Davies, J.
(Eds.): FM ’99, Vol. I, LNCS 1708, Springer, 1999, pp. 76-95

[Fra99] Frank, U.: ”MEMO: Visual Languages for Enterprise Modelling.” Research
Report of the IS Research Institute, University of Koblenz, Nr. 18, 1999

[FrLa03] Frank, U.; Laak, Bodo van: „Anforderungen an Sprachen zur Modellierung
von Geschäftsprozessen.“ Research Report of the IS Research Institute,
University of Koblenz, Nr. 34, 2003

[Gad01] Gadatsch, A.: “Management von Geschäftsprozessen.” Wiesbaden: Vieweg,
2001

[GrRo99] Green, P.; Rosemann, M.: ”An Ontological Analysis of Integrated Process
Modelling.” In: Jarke, M.; Oberweis, A. (Eds.): CAiSE ’99, LNCS 1626,
Springer, 1999, pp. 225-240

[Hans92] Hansen, H.: „Wirtschaftsinformatik I: Einführung in die elektronische
Datenverarbeitung.“ 6. Auflage, Stuttgart, Jena: Gustav Fischer Verlag, 1992

[Hei88] Heinen, E.: „Produktions- und Kostentheorie.“ In: Jacob, H. (Hrsg.):
Allgemeine Betriebswirtschaftslehre, pp. 209-299, Gabler, 5. Edition, 1988.

[Herb97] Herbst, H.: ”Business Rule-Oriented Conceptual Modeling.” Physica-
Verlag, 1997

[Holl95] Hollingsworth, D.: “The Workflow Reference Model.” Document Number
TC00-1003, Winchester: Workflow Management Coalition, 1995

[Holl04] Hollingsworth, D.: „The Workflow Reference Model: 10 Years on.“ In:
Fischer, L. (editor): „Workflow Handbook 2004.“ Lighthouse Point (FL/USA):
Future Strategies, 2004

[Jung01] Junginger, S.: „Workflowbasierte Umsetzung von Geschäftsprozessen.“
Dissertation, Universität Wien, 2001

[Jung03] Jung, J.: “Some Reflections on the Basic Conceptualisation of a Resource
Modelling Language for Business Process Modelling: Concepts, Requirements
and Open research Questions.” Research Report of the IS Research Institute,
University of Koblenz, Nr. 35, 2003

[JuKi04] Jung, J.; Kirchner, L.: “A Framework for Modelling E-Business-Resources.”
Research Report of the IS Research Institute, University of Koblenz, Nr. 44,
2004

[KoPl00] Koubarakis, M.; Plexousakis, D.: ”A Formal Model for Business Process
Modelling and Design.” In: Wangler, B.; Bergman, L. (Eds.): CAiSE 2000,
LNCS 1789, Springer, 2000, pp. 142-156

[Mato03] Matousek, P. :”Verification of Business Process Models.” PhD Thesis,
Technical University of Ostrava, 2003

 - 50 -

[Nori02] Norin, R.: „Workflow Process Definition Interface: XML Process Definition
Language.“ Document Number WfMC.TC-1025, Lighthouse Point (Fl):
Workflow Management Coalition, 2002

[Nübe01] Nübel, H.: “The resource renting problem subject to temporal constraints.” In:
OR Spektrum (2001) 23, pp. 359-381.

[Obe96] Oberweis, A.: ”Modellierung und Ausf¨uhrung vonWorkflows mit Petri-
Netzen.” Stuttgart, Leipzig: Teubner, 1996

[Öst95] Österle, H.: ”Business Engineering: Prozess- und Systementwicklung.”
Springer, 1995

[PSO99] Podorzhny, R.M.; Staudt Lerner, B.; Osterweil, L.J.: ”Modeling Resources for
Activity Coordination and Scheduling.” In: Ciancarini, P.; Wolf, A.L. (Eds.):
COORDINATION ’99, LNCS 1594, Springer, 1999, pp. 307-322

[Sche99] Scheer, A.-W.: ”ARIS - Business Process Modeling.” 2nd edition, Springer,
1999

[SS01] Schiemenz, B.; Schönert, O.: „Entscheidung und Produktion.“ Lehr und
Handbücher der Betriebswirtschaftslehre, München, Wien, Oldenbourg
Verlag, 2001.

[Sta97] Stark, H.: “Understanding Workflow.” In: Lawrence, P.: “Workflow
Handbook 1997.” Chichester et al.: Wiley, 1997, pp. 5-25

[SuOs97] Sutton, S.M.; Osterweil, L.J.: ”The Design of a Next-Generation Process
Language.” In: Jazayeri, M.; Schaure, H. (Eds.): Software Engineering -
ESEC/FSE ’97, LNCS 1301, Springer, 1997, pp. 142-158

[WaWe93] Wand, Y.; Weber, R.: ”On the Ontological expressiveness of Information
Systems Analysis and Design Grammar.” In: Journal of Information
Systems, Vol. 3, Nr. 2, 1993, pp. 217-237

[Web97] Weber, R.: ”Ontological Foundations of Information Systems.” Coopers
and Lybrand Accounting Methodology, Monograph No. 4, 1997

[WfMC98] o.V.: “Workflow Management Application Interface (Interface 2&3)
Specification.” Document Number WFMC-TC-1009, Workflow Management
Coalition, 1998

[WfMC99] o.V.: “Terminology & Glossary.” Document Number WFMC-TC-1011,
Workflow Management Coalition, 1999

 - 51 -

Previous Reports
Hampe, J. F.; Lehmann, S.: „Konzeption eines erweiterten, integrativen
Telekommunikationsdienstes.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 1,
Koblenz 1996

Frank, U.; Halter, S.: „Enhancing Object-Oriented Software Development with Delegation.“
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 2, Koblenz 1997

Frank, U.: „Towards a Standardization of Object-Oriented Modelling Languages?”
Arbeitsbericht des Instituts für Wirtschaftsinformatik, Nr. 3, Koblenz 1997

Frank, U.: „Enriching Object-Oriented Methods with Domain Specific Knowledge: Outline of
a Method for Enterprise Modelling.” Arbeitsberichte des Instituts für Wirtschaftsinformatik,
Nr. 4, Koblenz 1997

Prasse, M.; Rittgen,P.: „Bemerkungen zu Peter Wegners Ausführungen über Interaktion und
Berechenbarkeit.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 5, Koblenz
1997

Frank, U.; Prasse, M.: „Ein Bezugsrahmen zur Beurteilung objektorientierter
Modellierungssprachen - veranschaulicht am Beispiel vom OML und UML.“ Arbeitsberichte
des Instituts für Wirtschaftsinformatik, Nr. 6, Koblenz 1997

Klein, S.; Zickhardt, J.: „Auktionen auf dem World Wide Web: Bezugsrahmen, Fallbeispiele
und annotierte Linksammlung.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 7,
Koblenz 1997

Prasse, M.; Rittgen, P.: „Why Church's Thesis still holds - Some Notes on Peter Wegner's
Tracts on Interaction and Computability.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 8, Koblenz 1997

Frank, U.: „The MEMO Meta-Metamodel.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 9, Koblenz 1998

Frank, U.: „The Memo Object Modelling Language (MEMO-OML)“ Arbeitsberichte des
Instituts für Wirtschaftsinformatik, Nr. 10, Koblenz 1998

Frank, U.: “Applying the MEMO-OML: Guidelines and Examples.” Arbeitsberichte des
Instituts für Wirtschaftsinformatik, Nr. 11, Koblenz 1998

Glabbeek, R.J. van; Rittgen, P.: „Scheduling Algebra.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 12, Koblenz 1998

Klein, S.; Güler, S.; Tempelhoff, S.: „Verteilte Entscheidungen im Rahmen eines
Unternehmensplanspiels mit Videokonferenzunterstützung.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 13, Koblenz 1997

Frank, U.: „Reflections on the Core of the Information Systems Discipline.“ Arbeitsberichte
des Instituts für Wirtschaftsinformatik, Nr. 14, Koblenz 1998

Frank, U.: „Evaluating Modelling Languages: Relevant Issues, Epistemological Challenges
and a Preliminary Research Framework.” Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 15, Koblenz 1998

Frank, U.: „An Object-Oriented Architecture for Knowledge Management Systems.“
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 16, Koblenz

Rittgen, P.: „Vom Prozessmodell zum elektronischen Geschäftsprozess.“ Arbeitsberichte des
Instituts für Wirtschaftsinformatik, Nr. 17, Koblenz 1999

 - 52 -

Frank, U.: Memo: „Visual Languages for Enterprise Modelling.“ Arbeitsberichte des Instituts
für Wirtschaftsinformatik, Nr. 18, Koblenz 1999

Rittgen, P.: “Modified EPCs and their Formal Semantics.” Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 19, Koblenz 1999

Prasse, M., Rittgen, P.: “Success Factors and Future Challenges for the Development of
Object Orientation.” Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 20, Koblenz
2000

Schönert, S.: „Virtuelle Projektteams - Ein Ansatz zur Unterstützung der
Kommunikationsprozesse im Rahmen standortverteilter Projektarbeit.“ Arbeitsberichte des
Instituts für Wirtschaftsinformatik, Nr. 21, Koblenz 2000

Frank, U.: „Vergleichende Betrachtung von Standardisierungsvorhaben zur Realisierung von
Infrastrukturen für das E-Business.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik,
Nr. 22, Koblenz 2000

Jung, J.; Hampe, J.F.: „Konzeption einer Architektur für ein Flottenmanagementsystem.“
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 23, Koblenz 2001

Jung, J.: „Konzepte objektorientierter Datenbanken – Konkretisiert am Beispiel GemStone.“
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 24, Koblenz 2001

Frank, U.: „Organising the Corporation: Research Perspectives, Concepts and Diagrams.“
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 25, Koblenz 2001

Kirchner, L.; Jung, J.: „Ein Bezugsrahmen zur Evaluierung von UML
Modellierungswerkzeugen.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 26,
Koblenz 2001

Botterweck, G.; Hampe, J.: „Benutzeroberflächen für WAP-basierte Mobile Commerce
Anwendungen.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 27, Koblenz 2001

Jung, J.; van Laak, Bodo L.: „Flottenmanagementsysteme - Grundlegende Technologien,
Funktionen und Marktüberblick.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr.
28, Koblenz 2001

Jung, J.; Kirchner, L.: „Logistische Prozesse im Handwerk – Begriffliche Grundlagen und
Referenzmodelle.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 29, Koblenz
2001

Frank,U.: „Forschung in der Wirtschaftsinformatik: Profilierung durch Kontemplation – ein
Plädoyer für den Elfenbeinturm.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr.
30, Koblenz 2002

Jung, J.; Lautenbach, K.: „Simulation des Einflusses von Notfällen auf die
Auftragsbearbeitung in Handwerksbetrieben.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 31, Koblenz 2002

Jung, J.: „Entwicklung eines elektronischen Fahrtenbuchs - Grundlegender Entwurf,
prototypische Implementierung und zukünftige Potentiale.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 32, Koblenz 2002

van Laak, B. L.; Frank, U.: „Eine Struktur zur Beschreibung von Prozessmustern der
ECOMOD-Prozessbibliothek.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr.
33, Koblenz 2002

 - 53 -

Frank, U.; van Laak, B. L.: „Anforderungen an Sprachen zur Modellierung von
Geschäftsprozessen.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 34, Koblenz
2003

Jung, J.: “Some Reflections on the Basic Conceptualisation of a Resource Modelling
Language for Business Process Modelling - Concepts, Requirements and Open Research
Questions.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 35, Koblenz 2002

Troitzsch, K. G.; Kaiser, S.; Mayer, A.; Meyer, U.: „E-Government. Forschungsfragen, State-
of-the-Art und Perspektiven.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 37,
Koblenz 2003

Lange, C.: „Analyse und Entwicklung von Strategien für KMU im Electronic Commerce.“
Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 38, Koblenz 2003

Lange, C.: „Developing Strategies for Electronic Commerce in Small and Medium Sized
Companies - Guidelines for Managers.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 39, Koblenz 2003

Lange, C.; Frank, U.: „Ein Bezugsrahmen zur Verfeinerung und Umsetzung von
Unternehmensstrategien im Electronic Commerce.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 40, Koblenz 2004

Frank, U.; Lange, C.: „A Framework to Support the Analysis of Strategic Options for
Electronic Commerce.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 41,
Koblenz 2004

Frank, U.; Lange, C.: „Corporate Strategies for Electronic Commerce – Stepwise Refinement
and Mapping to Generic Business Models.“ Arbeitsberichte des Instituts für
Wirtschaftsinformatik, Nr. 42, Koblenz 2004. (forthcoming)

Frank, U.; Jung, J; Kirchner, L.: “A Library of Generic Business Process Models for
Electronic Commerce.” Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 43,
Koblenz 2004. (forthcoming)

Jung, J.; Kirchner, L.: „A Framework for Modelling E-Business Resources.” Arbeitsberichte
des Instituts für Wirtschaftsinformatik, Nr. 44, Koblenz 2004.

Frank, U.; Lange, C.: „Einführende Lehrbücher für ‚Information Systems’ aus dem
Blickwinkel der Wirtschaftsinformatik – Vorbild oder Bedrohung?“ Arbeitsberichte des
Instituts für Wirtschaftsinformatik, Nr. 46, Koblenz 2004.

Jung, J.: „Mapping of Business Process Models to Workflow Schemata – An Example using
MEMO-OrgML and XPDL.“ Arbeitsberichte des Instituts für Wirtschaftsinformatik, Nr. 47,
Koblenz 2004.

