
Three Integrated Tools for Designing and Prototyping

Object-Oriented Enterprise Models*

Ulrich Frank, Stefan Klein

Gesellschaft für Mathematik und Datenverarbeitung
Schloß Birlinghoven
Postfach 13 16
5205 Sankt Augustin 1
Germany

GMD research paper No. 689, 1992

Abstract
The paper presents an integrated environment for designing object-oriented enterprise
models. The conceptual framework it is based on recommends a multi-perspective ap-
proach. For this purpose three main views on the enterprise are proposed: a strategic view,
an organizational/operational view and an information system view. The environment
that is introduced is intended to encourage the design of enterprise models on these three
levels as well as interconnecting them. It features three tools each of which is related to
one or more main levels of abstraction. The Object Model Designer guides conceptual-
ization of an enterprise wide object model. Object models are represented using a graph-
ical notation that is completed by a structured description of classes and associations. In
order to facilitate user feedback fast prototyping is supported by generating code from
class descriptions. The object model´s implementation demonstrates the automatic con-
trol of semantically rich integrity constrains as well as the benefits of inter-application
communication using domain concepts as common references rather than technical ones.
The Office Procedure Designer guides the description of office procedures which are
conceptualized as ordered graphs of activity blocks. It provides means to analyze the ef-
fectiveness of business procedures and generates prototypical user-interfaces as a repre-
sentation of a virtual procedure document. The Value Chain Designer is mainly a tool for
representing and documenting business activities and for strategic scrutiny. Based on Por-
ter´s value chain concept it provides a general framework as well as analytical categories
to segment business units and to establish relations between different activities. It thus
supports modelling of alternative future strategies.

Beside a detailed description of the tools listed above the paper presents a conceptual
framework for the design of multi-perspective enterprise model. Furthermore it is dem-
onstrated how the tools and the related methods interact during analysis and design and
how the partial models managed by the tools are integrated.

Keywords
Object-Oriented Analysis, Object-Oriented Design, Enterprise Modelling, Business
Planning, Fast Prototyping, Integrated Information Systems, Reusability

1 Introduction
Designing, implementing and using corporate information systems face numerous chal-
lenges, e.g. frictions between the different stages of system life-cycles should be
avoided, the software architecture should support system adaptability, communication
between different applications (within one organization as well as inter-organizational)
should be possible on a high level of semantics, costs for development and maintenance
should be reduced. Integration as well as reusability seem to be attractive orientations to
meet these challenges. Both of them require comprehensive models of the enterprise in
general and of its information system in particular.
For a number of reasons an object-oriented approach seems to be very suitable to build
such models. The project "Computer Integrated Enterprise" [Frank/Klein 1992] that had
been started in 1990 at the German National Research for Computer Science is dedi-
cated to this subject. This paper reports on some of the results that have been accom-
plished so far. It presents a methodology as well as a set of related tools which are
intended to support the design of enterprise models - particularly by
• providing a representation of organizations that is illustrative for business people and

takes into account the requirements of object-oriented analysis and design at the same
time.

• supporting identification, specification and refinement of objects (classes).
• contributing to strategic planning of the business and the information system.
• providing means to analyze and refine the effectiveness of business procedures.
• conveniently modelling and prototyping user-interfaces.

Generic enterprise models that fulfil the requirements of a wide range of firms are an
attractive research vision. It is however not possible to develop such models from
scratch. You have to start with one enterprise of a particular domain. The domain we
started with is car insurance within an insurance company. The examples given below
are taken from this domain.

2 Conceptual Framework
While the notion of enterprise models becomes more and more popular - within the
research community (see for instance [Pröfrock et al. 1989], or [ESPRIT 1991]) as well
as in the area of commercial software development and information system planning

([IBM], [Katz 1990]) there is no detailed consensus on how an enterprise model should
look like. Enterprise models are supposed to provide a suitable foundation for integrat-
ing information systems.

2.1 Dimensions of Integration

Within the context of information systems the term integration is usually related to the
different components of the system. Although this is an important issue there are other
dimension of integration which should be taken into account as well:
• integrating the different phases of the software life-cycle
• integrating the different roles and perspectives of those who analyze, design and use

an information system
• integrating the information system (and its development) with the organization (and

its development)

Integration implies communication. For components to be able to communicate there
has to be a common semantic reference system. In other words: they need to have corre-
sponding interpretations of the symbols they interchange as well as common unique
names for these interpretations. Data types, functions of an operating system or relations
within a database are examples for such reference systems. The more semantics is incor-
porated in the concepts that can be referred to the higher is the level of integration. The
amount of semantics itself depends on the number of permitted interpretations. A data
type like an integer can be interpreted in numerous different ways - depending on what
real world entity it represents. A concept however that directly represents a real world
entity reduces the set of possible interpretations. Is there any indication for the appropri-
ate amount of semantics? It seems to be desirable to provide concepts that incorporate
enough semantics not to bother any of the involved components with the need to recon-
struct meaning for further processing. For instance: defining a concept “account” rather
than only providing more general concepts that could be used to implement an account
in a convenient way. If you then include a certain graphical representation of an account
into a document the document processor should know the semantics of an account -
which would improve the chances for powerful interpretations. Considering the need for
flexibility and reusability however recommends to also provide more general concepts
that allow for specialization.

Banking

Accounting
Taxes

Communication
GUI

DBMS

Insurance

Marketing

Documents

Social Security

Wholesale Trade

Figure 1. Visualizing the Vision: Generic Object Models as Promoters
of both high Level Integration and Reusability

Common semantic reference systems are not only a prerequisite for technical integra-
tion. In order to overcome the frictions between the different phases of the software life-
cycle it is desirable to use the same or at least similar concepts from analysis to imple-
mentation. Mediating between different human perceptions of reality also requires com-
mon reference systems or in other words: a common universe of discourse. Different
from formal systems a certain amount of ambiguity is not only tolerable but sometimes
even helpful to cope with complexity.

2.2 Levels of Abstraction

What are the implications of these thoughts for the design of enterprise models? First:
for enterprise models to serve as promoters of integration they need to be comprehen-
sive. That means they have to provide a description of reality, "which correspond
directly and naturally to our own conceptualizations" [Levesque/Myloupolos 1984].
Second: since there are different conzeptualisations as well as different requirements on
modelling (for instance between business analysis and software development), an enter-
prise model should represent reality on different levels of abstraction. Considering the
numerous views/conceptualizations (see for instance [ESPRIT 1991], [Zachman 1987])
one can think of it is necessary to make a suitable selection. We decided on three main
levels of abstraction:

Customer

Supplier

Research Area

B
u

si
n

es
s

P
ar

tn
er

s

R
o

le
s

Applications

Computer Science Psychology

Management Science

Document-Processing

Accounting E-Mail

User

Manager

Programmer

System Analyst
Enterprise

Model

Figure 2. Dimensions of Integration fostered by Enterprise Models

• a strategic view
• an operational/organizational view
• an information system view

Considering the complexity of the overall design process it is important to provide a tool
that supports a systematic approach. Such a tool should enforce a certain methodology
for object-oriented analysis and design. It should prevent the model from becoming
inconsistent by checking for ambiguity and contradictions. Participation requires a sub-
stantial understanding of how the system will look like. Therefore the tool should allow
for fast prototyping. On the strategic as well as on the organizational level there may be
concepts which cannot be formalized although they can be comprehensively described.
In order to link them to related concepts it is desirable that the tool includes some kind of
hypertext-features.
It is often argued that an information system should be adapted to the organization, not
the other way around. While such a request seems reasonable at first sight (specially
when you consider how restrictive today´s software sometimes is) it is not completely
convincing. This is for two reasons. First: a business firm´s actual organization does not
have to be efficient. Adapting an information system to it means to put effort in recon-
structing inefficient structures and procedures. Second: in order to exploit the potential
of information systems it can be suitable to rearrange an organization that had been effi-
cient on a lower level of automation. Like Savage [1990, p. xii] assumes: “Could it be
that we are putting fifth generation technology in second generation organizations?”
Taking these thoughts into account recommends mutual adaptation of organization and
information technology. To reduce the complexity of this task it is desirable that a tool
supports the evaluation of organizational alternatives.
The environment we developed is a first attempt to fulfil the requirements listed above.
Currently it consists of three tools which are enhanced by a hypertext-system. Each of the
tools covers at least one of the three main levels of abstraction (see fig. 2). All the tools
have been written in Smalltalk-80 within the Objectworks® environment. Schultz [1990]
has proposed an alternative concept for an object-oriented information systems architec-
ture modeler (ZOOM) which is implemented in Smalltalk-V. ZOOM is based on Zach-
man's concept for an IS architecture [1987] and "... is a framework of loosely coupled
cells organized to communicate an information systems architecture". In contrast to
ZOOM, the environment we developed is not restricted to information system architec-
ture but puts special emphasis on the design of multi-perspective enterprise models.

All the tools of the integrated design environment (Object Model Designer, Office Pro-
cedure Designer, Value Chain Designer) have been written in Smalltalk-80 (Vers. 4.0)
within the Objectworks® environment. High productivity could be achieved by using
additional class libraries:
• ObjectKit®, a Smalltalk class library that contains classes which allow to make

objects persistent.
• Smalltalk Frame Kit (already mentioned above)
• Tigre®, an interactive interface-builder that also includes some database features.

• Analyst®, a desktop publishing system that supports hyper-documents.
• NEDT®, a class library that supports the development of customized graphical edi-

tors.

3 Developing a Static Representation of the Enterprise: The Object
Model Designer

An object model is the core of an enterprise model. The concepts it describes can be
referred to by other particular models. An object model consists of classes and relation-
ships between them. While it is often argued that objects offer a natural way of describ-
ing reality it cannot be neglected that the notion of an object within a conceptual model
has to be oriented towards a certain formal structure - no matter how people prefer to
describe entities they perceive. The Object Model Designer is intended to provide ana-
lysts and users with a suitable and comprehensive concept of an object and guide the
mapping of real world domains to object models.

Strategic View

Value Chains
Corporate CultureGoals

Strategic Options

IS View

Classes
Associations

Procedures

TransactionsUser-Interfaces

Organizational View

Tasks Events

Business Rules
Office ProceduresObjects

Roles

Activity Blocks
Procedures

Procedure Documents
States

User-Interfaces
Roles

Throughput

Office Procedure
DesignerCommon Object Model

Hypertext-System

Figure 3. Tools of the design environment and their relation to different views
of the enterprise

Value Chain
Designer

Value Chains
Value Chain Activities

Resources
Costs

Classes Attributes
Constraints

Services
Associations

Default Widgets

Object Model
Designer

3.1 Object Semantics

While from a (re-)using programmer´s point of view it is sufficient to describe an object
solely by the services it provides analysis and design require a more detailed view. Our
concept of an object model is inspired by Booch [1990] and Rumbaugh et.al. [1991].
According to them (and most other authors) an object is modelled by describing
attributes and services. Additionally we use the category constraints. Furthermore it is
possible to establish numerous relationships between objects/classes. Depending on the
features of the implementation language it can be important to make a difference
between class and instance level (like in Smalltalk). We found however that it is accept-
able to neglect the class level. During analysis and design you primarily focus on the
features of an instance-object (not to be confused with a particular instance, see 3.3).
Furthermore class level specifications are hard to transform with languages that do not
regard classes as objects. An object/class is modelled by describing attributes, services
and a default view. Additionally we use the category constraints.
An attribute is regarded as an object that is encapsulated within the object. We do not
allow attributes - like Coad/Yourdan [1991] - to only hold references to external objects
that have an existence of there own in the object space. An attribute is described by the
following aspects:

• name
• class
• cardinality
• default value
• history
• authorization

Specifying an attribute´s class is a prerequisite for typing. The OMD also allows to paste
services from an attribute´s class into the classes interface. For instance: class Employee
may contain an attribute of class BirthDate, the service age may now be generated for
Employees, too. If name conflicts occur, the user will be notified.
Cardinality has to be defined in min., max.-notation. For instance: a costumer´s tele-
phone number may have cardinality 0,*. Specifying a default value may allow for gener-
ating an appropriate initialization method. If history is set to true every update of the
attribute has to be recorded somehow. The authorization to access an attribute can be
separately described for get- and put-access where each access type can be assigned one
of three authorization numbers: private (0), protected (1) or public (2). It is not possible
to define write-permission to be greater than read-permission. Implementation of autho-
rization levels certainly depends on the features of the implementation language. Deviat-
ing from a solution like it is featured by C++ other objects can access attributes only via
services. The OMD generates put- and get- services for each attribute. Visibility of the
services depends on the authorization level (see also below). The current version only
generates Smalltalk-like interfaces. For instance: definition of the attribute “name”
would result in the services name and name:.
Services are characterized by their interface, where each attribute is defined by its class,

and a natural language description of the function they fulfil. Furthermore a precondi-
tion and a postcondition can be specified. If the service returns an object, this object´s
class can be specified. While attribute and service descriptions already include con-
straints (like attribute-classes, pre- and postconditions) there may be other object-con-
straints that cannot be assigned to just one attribute or service. This is the case for integ-
rity rules which interrelate different attributes or services. We differentiate between two
types of constraints: guards and triggers. A guard is a constraint that prevents the object
from merging into a certain state. For instance: the resale-price assigned to a product
should never be less than the purchase-price. A trigger on the other hand prevents an
information system from becoming inconsistent by not reacting if some condition is ful-
filled. For instance: If a customer who holds a car insurance policy has been driving
without an accident for more than three years and has not been assigned the highest
claims bonus yet, his claim bonus has to be increased.
In order to allow for generating prototypical user-interfaces it is possible to assign a
default view (a collection of widgets) to each class. One can also define labels that are to
be presented with the widgets. Additionally the size of the widgets can be pre-specified.
Since attributes are characterized by their class a default view of a newly defined class
can be generated by using its attibutes’ default views. This approach is a first attempt to
deal with the complexity of modelling user interaction. It cannot be completely satisfac-
tory: the way a value of a certain class is presented to the user often is not unique but
varies with the context of interaction. For instance: you can display a name using a
scrollable text view, a listbox etc.

3.2 Associations between Objects

Objects within an information system are interrelated in various ways: objects may use
services from other objects, they may be composed of other objects, their existence may
depend on other objects etc. Taking such associations/relationships into account is cru-
cial for maintaining the integrity of an IS. Therefore they are commonly regarded as an
essential part of an object model. There is however no consensus on how to describe
them. Booch [1990] claims that it is sufficient to use only two sorts of relationships
between objects: using and containing. While a containing relationship describes aggre-
gation, a using relationship means that the related objects may interchange messages.
Rumbaugh et.al. [1991] do not suggest a limited set of associations. Instead they allow
the designer to define his own associations. We agree with Booch that aggregation and
interaction relationships are probably sufficient to classify most relationships. Thinking
of implementation it is also a good idea to limit the scope to a few well analyzed con-
cepts. But in order to design illustrative as well as semantically rich domain level mod-
els we prefer associations which may include domain specific semantics and which are
labeled with names that are known in the application domain. Having a wider range of
different types of associations allows to define views on aspects of the object model. If
somebody is interested in an organizational schema one could filter all classes which are
associated via “is subordinated” or “is superior”. A relationship may have features that
cannot solely be assigned to any of the connected objects. For instance: information on
the relationship attendsTo between an insurance agent and an insured person like “when

was the relationship established?” or “where was it established?”. For this reason we
adopt the approach Rumbaugh et al. suggest: associations may be modelled as classes. If
you do not restrict the set of allowable associations picking an association is necessarily
somewhat arbitrary (which is also the case for defining classes in general). This arbi-
trariness can be reduced by encouraging the analyst/designer to select from a collection
of previously defined associations before defining a new one. Furthermore it is possible
to take advantage of inheritance.
Last but not least: at the current state of art we regard the design of an object-oriented
enterprise model as an evolutionary research process. That puts emphasis on cyclic
refinement of the defined concepts. In the long range there is a chance to substantially
reduce the number of classes (whether they are associations or “ordinary” classes) by
inductive analysis.
The permissible cardinality range of an association has to be specified in min,max-nota-
tion. Each of the involved classes has to be assigned a tuple with the minimum number
of instances that have to be part of the association and the maximum number that is per-
mitted. While binary associations are preferable it is also possible to specify ternary
associations. Associations should be named like predicates to make the model more
descriptive. Since the appropriate predicate name often depends on the direction, it is
possible to assign an inverse name to each association. For instance: “is controlled by”
would be the inverse name to “controls”.
One association class is thought to provide a substitute for multiple inheritance that even
offers some advantages over the original. An object can import another objects´ features
by establishing a “has role”-association (which is sometimes referred to as “dynamic” or
“object-level” inheritance). The roles that are assigned to a class can be ordered to
resolve possible naming conflicts. If you want to describe an employee who is a man-
ager as well as a salesperson you do not define a class “managing salesperson” that
inherits from manager and salesperson. Instead employee is assigned the roles manager
and salesperson in a certain order.
In order to facilitate searching for already defined classes as well as to support a system-
atic approach to find new classes, the classes are grouped into categories. The definition
of categories should be oriented towards domain level concepts. Some of the categories
we have chosen: accounting, car insurance, marketing, people, documents, devices,
associations. Different from the concept used in Smalltalk a class may be assigned to
more than one category.

3 Prototypical Instantiation

The OMD allows for fast prototyping and evaluation on the instance level by generating
executable code. Smalltalk does not directly support important aspects of the object mod-
el: there is no strong typing, in general constraints cannot be implemented in a convenient
way. Therefore we use a frame-oriented object definition language that is part of the
Smalltalk Framekit (SFK), which has been developed by two colleagues at GMD [Fis-
cher/Rostek 1992]. The conceptual description of a class can be partially transformed in
SFK´s object definition language (primarily attributes together with their associated ac-

cess services). SFK allows to define classes and associations by providing a partially de-
clarative definition language. It enhances Smalltalk with strong typing. Various types of
constraints can be defined as well. Compiling a class goes along with generating code for
implementing guards and triggers. Figure shows an example of a frame-class definition.
The code that is printed in italic has been added manually.

4 Adding Dynamic Aspects: The Office Procedure Designer
Although the object model includes a few dynamic aspects (like method pre- and post-
conditions) it does not allow to model business procedures in an illustrative and compre-
hensive way. Object oriented design methodologies (like those promoted by Booch or
Rumbaugh et al.) suggest state transition diagrams. However, for our purpose these
techniques have two shortcomings. They do not provide a representation that fits the
average user´s perception of a business procedure. Since state transition diagrams
describe the behaviour of objects of a certain class they can hardly be used to support the
design of procedures from preexisting components. Dedicated methods/tools to support
design and implementation of office procedures (for instance Croft 1987, Ellis/Bernal
1982, Hogg 1987, Kreifelts 1987) seem to be more suitable. But they usually do not

initializeSlotDescriptions
"CarInsurancePolicy allSlotDescriptions"

(self slot: #ClaimsBonus)
range: Bonus;
maxCardinality: 1;
beforeAdd: [:policy :bonus :actBonus :transact|
(actBonus < policy maxBonus).

(self slot: #dateOfSigning)
range: ContractTime;
minCardinality: 1;
maxCardinality: 1.

(self slot: #methodOfPayment)
range: PaymentMethod.

(self slot: #paidPremium)
range: MoneyAmount;
minCardinality: 1.

•
•
•

Figure 4. Partial definition of class” CarInsurancePolicy” in SFK

emphasize the integration of the dynamic model with the static object model - if they are
object-oriented at all.

4.1 Conceptualization of an Office Procedure

We regard a procedure as an ordered graph of activity blocks (which I will refer to as
activity as well), which can be represented as a semantically enriched Petri net. Each
activity block (for similar conceptualizations compare Hogg 1987 and Lochovsky et al.
1988) is an object associated with a certain role of an employee who is responsible for
this particular task. An activity block can be modelled as a procedure itself. The subject
and the state of a procedure are captured in an object of class “ProcedureDocument”. In
the case of concurrent processing special constraints have to be fulfilled (see below).
Each activity block requires a certain state of the document as a precondition. Process-
ing the document within an activity results in one or more new states of the document.
Unlike a physical document it can be worked on at different locations at the same time -
provided there are constraints which prevent inconsistent states. An object of class “Pro-
cedureDocument” does not only offer a collection of information that has been related to
its different states. Furthermore it provides a prototypical user-interface for accessing
this information. A document is an illustrative as well as a powerful metaphor for
describing user-interfaces: it allows to present information in a way a user is familiar
with and it is more versatile than a mere window/widget-metaphor since it may incorpo-
rate a numerous pages and various links between them.

A procedure’s semantics can be divided into the following categories:

General constraints
For instance: A procedure must not contain deadlocks. There must not be endless loops.
There should be no task that cannot be reached by any chance.

Constraints on activities
For instance: An activity requires a certain state of a certain document type. It must pro-
duce one of a set of possible document states.

Constraints on documents
For instance: The variable parts of the document may be filled only with objects of a cer-
tain class. A part of the document that is processed within one activity may not be pro-
cessed within another activity that works on the document concurrently.

Dispatching
For instance: After an activity block´s postcondition is fulfilled its successor has to be
triggered, after an activity has been started, an employee who can take over the associated
role has to be informed. It may be important to first check an employee’s queue of activ-
ities before dispatching a new activity to him. Dispatching has to be done according to

Activity Block

Document State

Figure 5. Conceptualization of Office Procedures

organizational rules, like: only one employee may be responsible for the whole procedure
or for a collection of activities.

Exceptions
For instance: Within an activity block an inconsistent document state is detected that had
been caused in a preceding activity. An employee becomes sick before completing the
activity.

It is a crucial question for the design of a dynamic model to decide where to locate this
knowledge. While general constraints should be checked already during the design pro-
cess, all the other control knowledge can only be applied when the procedure is active.
Each procedure is supervised by a procedure manager, which is an object that coordi-
nates procedures of a certain domain. Whenever an event occurs that should trigger a
procedure the procedure manager is notified. It then looks up its description of the par-
ticular type of procedure and instantiates the first activity block as well as the procedure
document. Each activity block is responsible for transforming the document´s state to
one of the states that are defined as postconditions. The procedure manager and the pro-
cedure document serve as “glue” to link the activity blocks. If an activity has terminated
with one of its postconditional document states it notifies the procedure manager. The
procedure manager looks up its list of available (human) operators and their queues of
work to be done. Depending on its dispatch knowledge it will then instantiate an appro-
priate activity object and move it into the queue of the selected clerk. The procedure
document fosters integration of the activity blocks by holding the collection of (at least
partially) shared objects that need to be accessed within the procedure. When an activity
is triggered it updates the procedure document by passing a collection of needed objects
which have not been in the document yet. Only when the procedure has terminated reg-
ularly the procedure manager will release the involved objects (and thereby commit the
final state of the procedure document).
When an activity runs into an exception (like a violated constraint or a user-generated
interrupt) it will notify the procedure manager which will care for exception handling
(for instance: roll back to the preceding activity block).
The Office Procedure Designer (OPD) is a tool to instruct analysis and design of office
procedures according to the outlined architectural framework. For this purpose it pro-
vides the analyst/designer with an interactive template for systematically describing a
procedure´s tasks. It also includes a graphical editor that allows to model office proce-
dures in an illustrative way using a set of graphical icons (see fig. 4). The icons represent
either document states or tasks:

The OPD is not based on the waterfall-model. Instead we assume the different steps of
system development to be interwoven by cyclic feedback-loops. In order to allow for a
systematic description of the development approach that goes along with the OPD I will
differentiate between requirements analysis, design, analysis of organizational effective-
ness, and prototypical implementation.

an activity that requires user-interaction

an activity that is not computer supported at all

an activity that is modelled as a procedure itself

an activity that does not require user interaction

a procedure document´s stat

Figure 6. Icons used for the graphical representation of office procedures

Attributes
activeProcedures:OfficeP
availableOperators: Clerk

Services
nextOperator
handleException: excID

ProcedureManager

Attributes
document: ProcDocume
startTime: Time

Services
currentActivity
state

 OfficeProcedure

Attributes
created: Time
lastModified: Time

Services
displayView:
currentlyProcessed

ProcedureDocument

Attributes
startTime: Time
endTime: Time

Services
clerk
claim

ActivityBlock

dependsOn

supervises

1,1

0,*

1,1

1,1

1,1

1,*

isComposedOf

1,1

0,*

uses
1,1

1,*

 SubstantialMatterVer FormalCheck Settlement

isComposedOfis a

is a
is a

Figure 7. Partial object model of an office procedure

4.2 Requirements Analysis

Since the OPD is to support modelling of office procedures within a certain domain the
first step is to collect a list of procedures which are currently established within the
domain of interest. Thereby it should not matter whether the procedures are currently
computer-supported at all. Modelling a particular procedure will then be done interac-
tively by system analyst and domain expert. Starting with the event that triggers the pro-
cedure and that initializes the procedure document they describe the procedure using the
available icons and connecting them by directed lines. Thereby we assume that it is
intended to design a computer supported procedure - no matter how it has been orga-
nized in the past. However, there may be activities that cannot be supported by informa-
tion technology. They can be characterized by an appropriate icon (see above). In this
case the contents of the virtual procedure document would need to be (at least partially)
hardcopied. Afterwards the changes that have been applied to it would have to be added
somehow to the electronic document.

The first step of describing an office procedure as a net of activity blocks implicitly
includes the definition of temporal semantics. Activity blocks can be ordered sequen-
tially or concurrently which implies a notion of before, after and simultaneous. This
allows the OPD to perform certain consistency checks. For instance: detecting dead-
locks, or an activity block that produces a document state that had already been pro-
duced before (the last example is only a strong indicator of inconsistent design).
Within the next step the activities are characterized by the structured, semi-formalized
description that is encouraged by the interactive-template. Thereby three main aspects
are differentiated: organizational, informational, and control. Organizational aspects are
expressed by assigning a responsible employee (represented by an appropriate role, like
“Manager”) and a department both to the whole procedure and to each activity block.
Furthermore it is possible to define organizational constraints on the assignment of
employees to activity blocks (like each activity has to be taken care of by only one per-
son, or an activity block has to be supervised by the same person who supervised the
preceding activity). Each activity block should also be assigned an estimated processing
time. Gathering the information that is needed within an activity is crucial for capturing
the essence of an activity. It is structured by offering three categories of information
sources: information system, people, and paper based documents.
To specify the information that could be provided by the information system the system
analyst has access to the object model. He can browse through the available classes and
select the ones that are needed. If it is not a whole object of a certain class that is
required services and objects of a particular class can be selected, too (see screenshot in
figure 7). With each object/service a template is presented to encourage the description
of additional characteristics. Among others it allows to specify the location (internal IS,
external IS) of the object/service, the access permission (read, write) that is required,
what exceptions could occur, and whether the information should be pasted into the pro-
cedure document. The tool will notify the system analyst if write permission is assigned
to a particular attribute within two simultaneously active activity blocks. In case a ser-

vice is selected that requires input, it can be specified where the input comes from (paper
document, user ...). At this step it may turn out that information from the IS is needed
which has not been defined in the object model yet. Looking at office procedures
thereby supports finding, specifying as well as refining classes for the static part of the
enterprise model.
To characterize information that is provided by people the particular person has to be
specified by selecting a role from a given collection or adding it to the collection. Then
you can pick one or more media that are used for communication (like phone, fax, face-
to-face, letter ...). Finally there is another template that instructs what else could be spec-
ified (time estimated for delivering information, costs, exceptions, what is to be trans-
ferred to the procedure document, etc.).
There is also a collection of paper based documents (contracts, manuals, letters, memos
...) the system analyst can select from or enhance. A paper´s origin can be specified by
picking from a collection of locations (departments, organizations ...). The paper docu-
ment can then be further described by filling in a template that requests information on
time, costs, exceptions, what is to be transferred to the procedure document, etc.

In order to instruct the description of the control flow within an activity block a template

Activity Block

Organization Information Control

IS People Paper

Objects

Services Attributes

Figure 8. Partial Profile of an Activity

is presented that is generated depending on the document states that may result from the
activity (see figure 7). It encourages a declarative description, which is however not
required in this phase. To support system analyst and domain expert in filling the tem-
plate a report that includes a description of all the required information is presented in
another text view.

4.3 Design

What we called requirements analysis already results in a preliminary design of an office
procedure. One activity that can be related to design is reviewing how the results of
requirements analysis affected the object model. Do the proposed additional attributes or
services recommend to redesign the object model? If this is the case it may be necessary
to refine the procedure description as well.
The activities that constitute a procedure are preliminary named in a way domain experts
are familiar with, for instance “Verification of Substantial Matter”. These names have to
be changed now to appropriate class names in order to allow for generating class tem-
plates.

Figure 9. User-interface generated by the Office Procedure Designer

Figure 10. User-interface of the Office Procedure Designer

During analysis the control knowledge template is filled in a narrative natural language style.
This description is to be reviewed now in order to accomplish a more precise specification that
refers to objects and attributes/services. In order to allow for automatic interpretation it is desir-
able to use a formal language. It is also necessary to analyze the exceptions that have been
listed in order to specify how they should be handled. Furthermore the procedure manager´s
dispatch knowledge may have to be modified.
The OPD can now generate a prototypical user-interface. To accomplish this it looks up what
attributes/services as well as access types have been specified for each activity block. Within
the object model a default widget should be associated with each attribute, service-parameter or
returned object respectively. Taken these specifications together it is possible to preliminarily
associate a set of widgets with each document state. These widgets are then placed within a
window. The (sizeable) window comes up in a default size. The number of widgets however is
not limited by the window size since the window´s content (that is all its widgets) is scrollable.
The generated user-interface does not always provide a satisfactory layout (see figure 6 for an
example of an acceptable result). Moving, resizing and even replacing widgets however can be
done interactively. Each widget is linked to a service. When the objects that are needed within a
procedure are instantiated it is possible to access them via the interface. Defining the order of
input can be done interactively, too. A description of more specific interaction semantics can
only be added as comment.

4.4 Analysis of organizational Effectiveness

After having preliminarily completed requirements analysis and design the available descrip-
tions can be used to analyze the effectiveness of the procedure´s organization. For this purpose
a communication diagram can be generated. It shows the different roles participating in the pro-
cedure as well as the media they use to communicate. For further evaluation this diagram has to
be interpreted by a domain expert. A more substantial indicator for the need to reorganize the
procedure is a report of detected media frictions (like they occur when paper-based information
has to be transferred to the IS). Other indicators for further evaluation are the total time the
involved employees have to work on the procedure as well as the costs that can be calculated
from the different costs that have been specified.
Another question is more interesting but also more complicated to analyze since its scope is not
restricted to the described type of procedure: what is the optimum number of employees needed
to guarantee a satisfactory throughput? Or in other words: how can organizational slack be
reduced to an optimum? For this kind of analysis the conceptual level is not sufficient. Instead
it is the case for simulation. The current version of the OPD provides only limited simulation
capabilities. Bottlenecks only occur in case more than one person works on a procedure
(assumed that totally automated activities do not take considerable time). For this case it is pos-
sible to assign a number of people to each activity block that requires user interaction. Simula-
tion then reveals bottlenecks and total throughput-numbers for different constellations. This
however will only be sufficient in rare cases. Employees occupied within one procedure may
also have to fulfill other tasks. It has also to be taken into account that employees have vacation
days, that they may become sick (may be depending on the work load they face), that effective-
ness of human work depends on a variety of aspects. Furthermore quality of work cannot be
neglected, its relation to other variables however is hard to find out. Last but not least it does

not make much sense to optimize the organization of a single type of office procedure.
Since procedures may be interrelated you need to widen the scope (Porter´s value chain
concept is one approach to get an enterprise wide view). Optimizing the organization of
work has been a dream for long. We do not think that enterprise modelling along with
simulating organizational alternatives will make this dream come true. It can help how-
ever to reduce complexity by providing an illustrative representation of important
aspects and by detecting certain types of organizational misconception.

4.5 Prototypical Implementation

Analysis and design should deliver a comprehensive description of activity blocks. Pro-
totypical implementation aims at completing/refining this description to an extent that
allows for a test run of a procedure. Such a test run is not intended to offer simulation
but to give the potential users a substantial impression of the system.
The framework needed for an office procedure has already been implemented. On the
conceptual level it mainly consists of three classes: ProcedureManager, ActivityBlock,
and ProcedureDocument. They have to be specialized now for the particular type of pro-
cedure. In the easiest case a class that had already been implemented in the past can be
(re-)used. Otherwise specialization requires modification. This is particularly the case
for new activities. The corresponding classes inherit from the abstract class “Activity-

DepartmentManager

Clerk

Insured Person

Lawyer

Agent

Expert

Figure 11. Communication Diagram

Block” (see fig. 5). Their semantics is usually not completely formalized during analysis
and design. Therefore the current version of OPD requires to write some additional code
using an implementation language, which is Smalltalk in our case.
One part of the prototype´s user-interface is based on the OPD´s graphical representa-
tion of a procedure. Such a representation also provides an illustrative view of an active
procedure. The current state of the procedure is indicated by a highlighted icon. To get a
more detailed view (like: who is responsible for this activity, what is the name of the
costumer involved in this procedure etc.) the user clicks on the icon.

5 Supporting a Strategic Perspective: The Value Chain Designer
Designing an enterprise wide object model as well as a dynamic model of office proce-
dures does not only mean a big investment on itself. It also establishes a plan for future
investments in information technology. In order to protect these investments it is desir-
able to apply a long term view of the enterprise. It is the core function of strategies to
guide the coordination of internal activities according to the long range development of
the firm, especially the adaptation to a changing environment. The strategic perspective
refers to business goals and corporate culture of a firm. It provides a link between the or-
ganizational and the IS perspective. There is, for example, a strong interdependence be-
tween the development of technology and business strategies: current distributed and co-
operative information systems reflect strategies and organizational concepts (e.g. concur-
rent engineering, outsourcing) and strategies like the development of information part-
nerships reflect technological options. Nevertheless, an integration of the strategic per-
spective into the development cycles of enterprise information systems is particularly dif-
ficult as the strategy encompasses long term, abstract and sometimes even elusive goals,
which can not be easily translated into goals for systems engineers. This gap between the
different perspectives held for example by system engineers or strategic managers, often
leads to misunderstanding and badly coordinated activities.

In order to bridge this gap, we have developed the Value Chain Designer (VCD). It com-
prises different modules which support stepwise decomposition of strategies into value
chain activities and finally business procedures. However, decomposition is not a deduc-
tive inference process. It rather serves as a heuristics to facilitate analysis and to develop
a network of interrelated business activities. The analytic procedures are only partly for-
malized and require a considerable deal of interpretation in order to cope with complexity
and ambiguity.

The core features of the VCD are:

• It offers a systematic representation and evaluation of business activities within the
value chain (strength & weaknesses, potential for out-/insourcing, external links, e.g.
connection to inter-organizational systems, necessity for further development and use
of IS),

• It supports the analysis of input-output relations (including cost and quality aspects)
and of interdependencies between activities.

Thereby it enforces a formal concept and encourages the interactive, discursive develop-
ment of business strategies at the same time. Furthermore it facilitates the linking of stra-
tegic planning, organizational development and the design of information systems.

5.1 Conceptual Model: Value Chain

We have chosen and adapted Porter's value chain concept [Porter 1985] for its integrative
potential, its dynamic perspective concerning the future developments as well as for its
widespread acceptance and communicational power - and because "... the activities of the
value chain constitute the foundation of the controllable factors to achieve competitive
superiority." [Hax/Majluf 1991, p. 78]

The value chain is a comprehensive and generic model of business activities, which
claims that all of the tasks performed by a business organization can be attributed to nine
different broad categories (cf. [Hax/Majluf 1991, pp. 77]). It distinguishes between pri-
mary activities, which represent the classical managerial functions of the firm (inbound
logistics, operations, outbound logistics, marketing & sales, service), and support activi-
ties, which represent the pervasive managerial infrastructure of the firm (human resource
management, technology development, procurement) for the coordination and (long-
term) development of resources. The value chain thus represents the internal operations
of an organization in a dynamic perspective. These operations are embedded in a value
system which reflects the environmental scope of business activities. Car insurance e.g.
may be viewed as a part of the system of transport and logistics. The value chain aims at
a holistic view of the movements of goods and services from the sources through to the
consumer or "final" customer.

4.2 Strategic Scrutiny: Value Chain Modelling and Analysis

The VCD is mainly a tool for representing and documenting business activities and for
strategic scrutiny. It provides a general framework as well as analytical categories to seg-
ment business units and to establish relations between different activities. It thus supports
modeling of alternative future strategies. Strategic issues dealt with are - among others -
added-value, critical success factors, competitive advantage, horizontal strategy, vertical
integration, business partnerships and coordination, analysis of interdependencies be-
tween different firms.

In order to foster the evolution of a common universe of discourse (and to avoid redun-
dancy) the user is encouraged to look up existing dictionaries (i.e. of business procedures,
inputs, outputs). Only if he cannot find an appropriate item he should explicitly add a new
one.

Figure 12. User-interface of the Value Chain Designer

The VCD comprises four views, which are linked to each other. It thereby supports the
inquiry into the relations and sources of value chain activities:

(1) Value Chain View

The value chain view provides a framework for business segmentation: business activi-
ties can be allocated and classified in the value chain, clusters of strategic business units
can be formed and their strategic potential annotated. In particular the pervasive character
of communication and information systems as part of the business infrastructure (support
activities) can be illustrated. Assumptions concerning future developments, the integra-
tion of system functions and the contribution for business strategies can be made trans-
parent and can be made subject of a common evaluation. The value chain analysis com-
prises an external perspective, linking activities to activities of suppliers and customers.

The activities are presented as buttons which are ordered in a way similar to Porter´s rep-
resentation. Each button provides a link to a more detailed description of an activity.

(2) Value Chain Browser

The value chain consists of value chain activities (like inbound logistics, marketing, op-
erations etc.). These activities encompass further activities which are made up of business
procedures.

The Value Chain Browser presents the different value chains of a firm (in our example:
life insurance and car insurance) and the hierarchical structure of the value chain activi-
ties. This tool combines the functionality of a hierarchical browser and shows for every
chosen activity a list of either inputs, outputs or related activities.

(3) Value Chain Activity Viewer

A more detailed analysis of inputs, outputs and related activities is supported by the Value
Chain Activity Viewer:

For every selected activity lists of inputs (resources and goods) and outputs (settlements
etc.) as well as related value chain activities are represented simultaneously. Inputs and
outputs can be with costs and quality measures: "At the essence of value analysis are the
trade-offs to be made among price, quality, design, manufacturability, standardization,
and cost." (Hax; Majluf (1991), 305)

In a matrix of interdependencies eight types of relations are distinguished: The rows refer
to the quality of relation (indirect, direct, quality assurance), the columns refer to different
phases of the management process (planning, execution and control). Each type is imple-
mented as a button. When it is pressed, a list of activities which are related to the value
chain activity in the specified way is presented within the Related Activity Viewer.

(4) Related Activity Viewer

For every selected activity in the Value Chain Activity Viewer the Related Activity View-
er shows which primary or support activity it belongs to and which function it fulfils. Our
example this is incident statistics: it is part of information management and is related to
claim processing (which in turn is linked to one or more detailed descriptions of a claim
processing procedure within the Office Procedure Designer). The relation is qualified as

indirect and the statistics refer to execution, rather than to planning or control, of claim
processing. A text editor allows for a detailed description of the functions the chosen ac-
tivity performs.

Summarized the VCD supports documentation and management of business strategies by
the following conceptualizations:

• Activities are aggregated and classified into primary or support activities of the value
chain.

• Primary and support activities, which represent business units, are disaggregated into
several partial activities for a detailed analysis of interdependencies, costs, quality.

• The hypertext mechanisms (which are not shown in the figure) support the documen-
tation of assumptions, background knowledge and evaluations which are linked to val-
ue chain activities.

The VCD is integrated with the OMD and the OPD. On the technical level integration is
accomplished by storing all tools in one Smalltalk image. On the conceptual level inte-
gration is fostered by using common objects and by establishing links. For instance: a val-
ue chain activity is defined as a class within the OMD (providing services like listOfOut-
put, listOfInput, relatedActivities etc.). The resources used to describe a value chain ac-
tivity may refer to concepts defined as classes (like organizational roles). Value chain ac-
tivities can be linked to a set of office procedures (represented in the OPD), which may
include a more detailed description of resources.

6 Conclusions
Our experience with modelling an office domain within an insurance company indicates
that the proposed representations offer illustrative abstractions of an enterprise. This is
especially the case for the representation of office procedures. The graphical notation
was intuitively understood by both system analysts and domain experts. Thereby it is a
valuable medium for starting knowledge acquisition or object modelling respectively.
Users seem to prefer procedures as guidance in conceptualizing the domain they work
in. Therefore asking for a detailed description of office procedures does not only serve
the purpose of adding dynamic or temporal semantics to the model it also provides a
heuristics to shape the static object model.
Our main focus was to develop general concepts and instantiate them solely for proto-
typing issues. However the tools can also be used on an operational level. This is spe-
cially true for the OPD and the VCD since they are also thought to guide an economic
analysis of a particular firm. For this purpose it would be important not only to instanti-
ate them with a complete description of the enterprise but also to record the evolution of
business data. That would not only allow to analyze (or detect) interdependencies. It
would also enrich modelling of office procedures and strategical analysis with enterprise
specific data. Enterprise specific knowledge that cannot be formalized could be added
using the already available hypertext features.

We plan to integrate activity based accounting (activity based costing) methods in order
to find a more precise judgement of cost effects related to proposed changes and innova-
tions. Thereby the mutual refinement of office procedure modelling and strategic analy-
sis will be improved. At the same time it promises to facilitate the evaluation of business
processes.
Although office procedures are an illustrative metaphor it is not sufficient to describe all
kinds of work in the office. Ill-structured cooperative work requires other concepts as
well as another graphical representation. It would be interesting to complement the
Office Procedure Designer by a tool that allows for illustratively modelling CSCW-
applications (for an example on the instance level see [Ellis 1987]).
Currently the tools are reimplemented using a different user-interface management sys-
tem, that allows for generating Smalltalk’s code and makes use of the model/view/con-
troller-concept (Objectforms® by Heeg). The tools will then allow to dynamically
change the Look&Feel of their user-interfaces (covering the following styles: Open-
Look, Macintosh, Motif, Smalltalk, Windows, Presentation Manager). Furthermore we
are modifying the concepts used for modelling associations and triggers.

References
Araya, A.A.; Stefik, M.J., “Generic Knowledge in Office Activities”, in: Lochovsky, F.

(Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge: Represen-
tation, Management and Utilization. Toronto 1987, pp. 54-59

Booch, G., Object-oriented design with applications. Redwood City 1990

Brodie, M.L., “On the Development of Data Models”, in: Brodie, M.L.; Mylopoulos, J.;
Schmidt, J. (Ed.), On Conceptual Modelling. Perspectives from Artificial
Intelligence, Databases and Programming. Berlin, Heidelberg etc. 1984, pp. 19-47

Bruni, G.; Cardigo, C.; Damiani, M.; Seminati, G., Final Report on Insurance Domain
Requirements Analysis. ITHACA.Datamont.89.D.7, 1990

Coad, P.; Yourdon, E., Object Oriented Design. New York 1991

Croft, W.B., “Representing Office Work with Goals and Constraints”, in: Lochovsky, F.
(Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge:
Representation, Management and Utilization. Toronto 1987, pp. 13-18

Dur, R.C.J., “Dynamic Modelling for Analysis and Design of Office Systems”, in: Sol,
H.G.; Van Hee, K.M. (Ed.), Dynamic Modelling of Information Systems.
Amsterdam, New York etc. 1991, pp. 303-321

ESPRIT Consortium AMICE, CIM-OSA AD 1.0 Architecture Description. Brussels
1991

Ellis, C.A.; Bernal, M., “OFFICETALK-D: An experimental office information system”,
in: SIGOA Newsletter 3, No. 1, 1982, pp. 131-140

Ellis, C.A., “NICK: Intelligent Computer Supported Cooperative Work”, in: Lochovsky,
F. (Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge: Repre-
sentation, Management and Utilization. Toronto 1987, pp. 95-102

Fischer, D.H.; Rostek, L., SFK: A Smalltalk Frame Kit. Concepts and Use. Darmstadt
1992 (in print)

Frank, U.; Klein, S., Unternehmensmodelle als Basis und Bestandteil integrierter
betrieblicher Informationssysteme. GMD research paper, No. 629, Sankt Augustin
1992

Frank, U. , "Designing Procedures within an Object-Oriented Enterprise Model". In: Sol,
H.G. (Ed.), Dynamic Modelling of Information Systems. Delft 1992

Frank, U.: "A Tool-Supported Methodology for Designing Multi-Perspective Enterprise
Model". To appear soon in: Proceedings of the Third Australian Conference on In-
formation Systems. Wollongong 1992

Graham, I., Object oriented methods. Redwood City 1991

Hax, A. C.; Majluf, N. S., The Strategy Concept and Process - A Pragmatic Approach.
Englewood Cliffs 1991

Hogg, J.: OTM, “A Language for Representing Concurrent Office Tasks”, in: Locho-
vsky, F. (Ed.), Proceedings of the IFIP WG 8.4 Workshop on Office Knowledge:
Representation, Management and Utilization. Toronto 1987, pp. 10-12

Hogg, J.; Nierstrasz,O.M.; Tsichritzis,D., “Office Procedures”, in: Tsichritzis, D. (Ed.),
Office Automation. Berlin, Heidleberg etc. 1985, pp. 137-165

IBM, IBM Enterprise Business Process Reference Model. 1990

Katz, R.L.: Business/enterprise modelling. In: IBM Systems Journal, Vol. 29, No. 4,
1990, S. 509-525

Kreifelts, T.; Woetzel, G., “Distribution and Error Handling in an Office Procedure
System”, in: Bracchi, G.; Tsichritzis, D. (Ed.), Office Systems: Methods and Tools.
Proceedings of the IFIP WG 8.4 1986. Amsterdam, New York etc. 1987, pp. 197-
208

Levesque, H.J.; Mylopoulos, J., “An Overview of Knowledge Representation”, in:
Brodie, M.L.; Mylopoulos, J.; Schmidt, J. (Ed.), On Conceptual Modelling.
Perspectives from Artificial Intelligence, Databases and Programming. Ed. by ,
Berlin, Heidelberg etc. 1984, pp. 3-17

Lochovsky, F.H.; Hogg, J.S.; Weiser, S.P.; Mendelzon, A.O., “OTM: Specifying office
tasks”, in: Allen, R.B. (Ed.): Conference on Office Information Systems. New York
1988, pp. 46-54

Macdonald, H.K., "The Value Process Model", in: Scott Morton, M.S. (Ed.), The Corpo-
ration of the 1990s: Information Technology and Organizational Transformation.
New York, Oxford 1991, pp. 299-309.

Meyer, B., Object-Oriented Software Construction. New York 1989

Porter, M.E., Competitive Advantage. Creating and Sustaining Superior Performance.
London 1985

Pröfrock, A.-K.; Tsichritzis, D.; Müller, G.; Ader, M., “ITHACA: An Integrated Toolkit
for Highly Advanced Computer Applications”, in: Tsichritzis, D. (Ed.), Object
Oriented Development. Genf 1989, pp. 321-344

Rothenberg, J., “Prototyping as Modelling: What is Being Modeled?”, in: Sol, H.G.; Van
Hee, K.M. (Ed.), Dynamic Modelling of Information Systems. Amsterdam, New
York 1991, pp. 335-357

Rumbaugh et.al., Object-oriented modelling and design. Prentice Hall 1991

Schank, R.C., The Cognitive Computer. On Language, Learning and Artificial
Intelligence. Reading/Mass. 1985

Schultz, R., ZOOM - The Object-oriented Information Systems Architecture Modeler,
Version 1.0 (Software Documentation), Dublin/Ohio 1990

Tsichritzis, D., “Form Management”, in: Communications of the ACM, Vol.25, No.7,
July, 1982

Zachman, J.A., “A framework for information systems architecture”, in: IBM Systems
Journal, Vol. 26, No. 3, 1987, pp. 277-293

