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Abstract

Although the promises of object-oriented software development are based on
solid grounds there is still a great amount of confusion on when and how to
invest in this new technology. This is partially due to the fact that a great number
of special approaches and methodologies have been proposed during the last
years. The report gives an overview of more than 30 approaches and presents a
framework that helps to compare them. The framework is then applied to two
methodologies which gained remarkable attention so far and are well docu-
mented at the same time: "Object Modelling Technique" by Rumbaugh et al. and
the methodology proposed by Booch. Both methodologies are described in detail
and evaluated according to the criterions presented in the framework. Since
design methodologies can hardly be evaluated without regarding specific context
variables the report does not aim at an "objective" score for each approach.
Instead it is intended to ease the decision between the two methodologies by
pointing to important differences.

Keywords

Object-oriented analysis, object-oriented design, object-oriented modelling,
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1. Introduction

It is widely accepted that the development of computer-supported information
systems requires the design of a suitable conceptual model. A conceptual model
aims at documenting the essential properties and constraints of an information
system in an illustrative way - last but not least by abstracting from implementa-
tion issues. Within the current software-engineering practice conceptual model-
ling is primarily done by data modelling where the Entity Relationship Model is
of special importance. During the last years object-oriented software develop-
ment has become more and more popular. While object-oriented programming
languages are still gaining attention an increasing number of software engineers
gets aware of the fact that the development of object-oriented information sys-
tems requires special methodologies for conceptual modelling. An object-ori-
ented approach promises to be very well suited to accomplish the goals com-
monly associated with conceptual modelling: Usually objects offer a more direct
and natural correspondence to real world entities than data structures. Inheritance
and encapsulation promote reusability of concepts and components. Furthermore
an object-oriented model fosters integration: The various parts of a corporate
wide information system can communicate on a higher level of semantics by
referring to domain level classes instead of (structured) data types.

Although the promises of object-oriented software development are based on
solid grounds there is still a great amount of confusion on when and how to
invest in this new technology. One reason for this confusion is closely related to
the attractiveness of object-oriented software: It motivates many manufacturers
and vendors to stick the label "object-oriented" to their products without deliver-
ing substantial features - as King (1989, p. 24) puts it ironically: "If I were trying
to sell (my cat) ... I would argue that he is object-oriented." The other reason is
the great variety of research going on. On the one hand this variety results from
the three roots of object-orientation: Artificial Intelligence, programming lan-
guages and data modelling. On the other hand it has epistemological reasons:
Whenever there is a new attractive research area a lot of ambitious people feel
motivated to work in this field - and to create their own approach. In a comment
on the news-net forum "comp.obj" (October 1991) Berard describes this situation
in the following way: 

"I have good news and bad news. The good news is that there has been a great deal of
work in the area of ’object-oriented software engineering’. The bad news is that there
has been a great deal of work in the area of ’object-oriented software engineering’".

For an executive or a system engineer who is in charge of deciding about a meth-
odology to apply this situation is often even worse: Many companies only
recently merged to Relational Database Management Systems and the Entity
Relationship Model as the corresponding modelling methodology. In order to
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protect this investment it makes sense to hesitate with merging to object-oriented
technologies.

The purpose of this paper is not to argue for an object-oriented approach - the
time that is most appropriate for turning to a new technology depends on a com-
plex set of circumstances which have to be carefully considered in every single
case. Instead we will try to ease the decision between different methodologies for
object-oriented design. Although there is already a large number of methodolo-
gies available we will not consider a complete set - which is changing from day
to day anyway. In practice the number of relevant methodologies is much
smaller. We will focus on two methodologies we found to be of outstanding
importance - which does not necessarily mean that they are of outstanding qual-
ity. They are well known, well documented, supported by a number of tools, and
relatively comprehensive.

First we will introduce a framework that supports the evaluation of methodolo-
gies for conceptual modelling. We will then give an overview of object-oriented
design methodologies and finally we will compare the methodologies proposed
by Booch and Rumbaugh et al.

2. A Framework for Evaluating Modelling Methodologies

Evaluating methodologies is usually a delicate job. This is specially true for com-
plex engineering methodologies. The judgement of those who apply them is very
likely to be biased: They have internalized the conceptualizations they profes-
sionally use and only for this reason they tend to prefer them from others. The
different opinions that emerge in this context make is almost impossible for the
proponents of different methodologies to agree on common criterions. An infa-
mous example for such a situation is the sometimes passionate discussion on the
quality of programming languages. It does not merely characterized by a lack of
objectivity, instead it necessarily reflects the fact, that the evaluation of model-
ling techniques cannot be accomplished regardless of personal preferences and
predispositions of the users. A methodology’s quality heavily depends on its
acceptance or in other words: how it contributes to a productive workstyle. The
criterions described below however do not include such subjective attitudes,
since they vary in a wide range. The criterions are deducted from the goals asso-
ciated with conceptual modelling, mainly integration and reusability.

2.1 Important Aspects

General Criterions
• Clarity: A methodology’s clarity or descriptiveness depends on the quality of

the (graphical) presentations it provides. This is the case for both the basic
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modelling constructs and the rules for composing them. It is desirable that the
constructs as well as the models composed from them should "correspond
directly and naturally to our own conceptualizations ..." (Mylopoulos/Lev-
esque 1984, p. 11). The presentation of a model should contribute to show this
correspondence. Since design, implementation, and use of corporate informa-
tion systems are associated with a range of different perspectives (like those of
system analysts, programmers, executives etc.) it is desirable that the method-
ology provides various levels of abstraction.

• Views: While integration recommends a holistic look at a system, it is never-
theless important that different contexts or views can be distinguished within a
model. A view not only fosters a model’s clarity by allowing to abstract from
aspects which are less relevant, it is also a prerequisite for defining access
rights and modelling aspects of the user-interface.

• Level of semantics: In order to establish a close correspondence to certain
parts of an application domain it is important that the modelling constructs
allow for capturing a high level of semantics. This is also required for the asso-
ciations between the constructs. Furthermore a methodology should provide
powerful concepts to generalize over invariant feature of a domain.

• Flexibility: Integrating the various parts of an information system requires a
common semantic reference system. A modelling approach should allow to
establish such a system for all parts of an information system - for instance for
office documents as well as for accounting. Furthermore it should be suited to
capture all essential aspects of design. That is not only static aspects but also
dynamic or functional aspects as well as the user-interface.

• Formalization: The modelling constructs should be defined well enough to
instruct or even generate implementation. The number of such constructs
should be small, the composition rules should be straightforward.

Integrating the development phases
• Common references: In order to integrate the different phases within the soft-

ware life-cycle it is recommended to use identical or at least similar constructs
from early analysis to implementation. Since the those phases require different
levels of abstraction it should be possible to look at the constructs at various
levels of detail.

• Incremental formalization/specification: Sometimes it is not possible or desir-
able to specify a construct in early phases in a detailed way. Therefore the
methodology should allow for specifying constructs in a preliminary way - not
forcing the designer to maintain integrity all the time.

• Avoiding friction between phases: Modelling complex application domains is
an evolutionary process. Therefore a methodology should allow for conven-
iently modifying a model. Transforming from one level of abstraction to
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another (i.e. from analysis to design) should not imply the loss of semantics.
Otherwise such transformations are not reversible and reconstructing seman-
tics at later point in time are expensive and risky. A methodology should also
support to maintain referential integrity between interrelated constructs used in
different phases. Furthermore it should allow to define formal procedures to
detect design errors not only on a syntactic but also on a semantic level.

Reusability
• Modularization: The components corresponding with the modelling constructs

should be protected against side-effects.
• Domain specific frameworks: A methodology that provides generic domain

models not only contributes to the design of specific models but also fosters
the search for application level components.

• Runtime-support: Implementing information systems requires a number of
general support functions, like interprocess-communication, management of
data and functions, information-retrieval etc. It is desirable that a methodology
is compatible with powerful runtime systems (like operating systems and
DBMS) which provide those functions.

Promoting sophisticated architectures
• Distribution: Modelling constructs and the corresponding implementation

components should allow for transparent distributed operations. In principal
the chances for a transparent distribution are improving with an increasing
amount of semantics contained in the constructs which are subject of commu-
nication. Mainly however the quality of a distributed architecture depends on
the integration of open system components, in other words: on the level of
standardization or commitment associated with modelling constructs or com-
ponents. 

• Integrity: The higher the level of semantics a model allows for the better are
the chances to accomplish an architecture that promises a high degree of integ-
rity. 

Looking at the various criterions listed above reveals that some of them are over-
lapping, others hardly allow for a degree of formalization that is required for a
comparison. Furthermore there is a conflict between some of the criterions. For
this reason we will further refine and restructure the criterions.

2.2 Refining and Enhancing the Framework

A conceptual model is an abstraction of a real world domain: Only those aspects
of a domain are considered, which are of any relevance for the information sys-
tem that is to be designed. Furthermore single instances of real world objects are
neglected. Instead it is desirable to apply generalized concepts. Within the criteri-
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ons listed above a model’s level of semantics is of outstanding importance. The
purpose of an information system is to manage information in a reliable way. The
degree of a model’s semantics depends on the permissible interpretations of the
stored information: the more they are restricted the more semantics the model
contains. In other words: semantics directly corresponds with the constraints
which exclude non permissible system states. To become more specific about
modelling we will first consider only static aspects. A conceptual model may
then be characterized as being composed of a set of entity types and associations
between them or the instances represented by them respectively.

An entity type or object type represents a set of entities, created by abstraction of
real world objects. A model’s integrity can then be characterized by an isolated
definition of its entity types as well as by considering associations between dif-
ferent types.

Isolated view of entity types
• Constraints on permissible states of an entity type’s instances.
• Constraints on permissible state transitions of an entity type’s instances. Such

constraints are important, whenever an arbitrary transition from one permissi-
ble state to another is not always allowed. For instance: The permissible values
for a retail price may cover a certain range. Additionally however it may be
appropriate to further restrict it by the value of the corresponding wholesale
price.

Instances of one entity types in interaction with other instances (of the same or of
other entity types)
• Constraints on permissible states of an entity type’s state depending on the

states of other instances. To give an example: The value range for an
employee’s salary may be restricted by the current value for his manager’s sal-
ary.

• Constraints on permissible state transitions of an entity type’s instances
depending on state transitions of other instances. Sometimes the change of an
instance’s state requires a corresponding change of other entities in order to
result in a consistent system state. This is the case for modelling transactions.

• Definitions of events which cause state transitions.
The constraints outlined above will be differentiated in the following way: Static
aspects describe permissible structures or states, functional aspects are focused
on functions which are to be performed by a system, while dynamic aspects cap-
ture a system’s behaviour during its lifetime. The functional as well as the
dynamic level control structures allow for representing control structures. They
specify conditions under which certain functions may be executed and under
which certain state transitions will occur. The following framework is based on
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this differentiation and reflects the criterions discussed above. It is not restricted
to methodologies for object-oriented design. Instead it may be applied to data
modelling methodologies as well. For this reason we will avoid object-oriented
terminology whenever possible and use more general terms instead - like entity
vs. object.
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within a given, hardware-oriented set (for in-
stance: fix point numbers from 1 to 100)

again related to a given set
(i.e. even fix point numbers)

by enumeration i.e. colours, names

minimum = 0

maximum > 1

Assigning a value may be declared as optional.

An attribute may have assigned more than one 
values.

An entity is solely identified by its state. That im-
plies the constraint that at no point in time two 
entities may coexist.

This is contrary to the case where an entity has 
a stable identity during its lifetime, regardless of 
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costumized entity type.

Here we think of constraints which restrict the 
permissible values of an attribute in regard of the 
values of other attributes.
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access privilege There are different levels to distinguish access 
rights to an attribute.
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There is a constructor to characterize an as-
sociation as an aggregation.
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Tupels of events and corresponding actions 
can be defined within a model.

Operations/Functions

triggers

A condition can be specified which is requi-
red to be satisfied in order to execute the 
operation.

preconditions

system behavior

exception handling

A condition can be specified that is required 
to be fulfilled when the operation terminates.

The methodology supports the modelling 
of a unified exception handling.

Dynamic/functional Aspects
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Dito, accompanied however by assigning 
access rights to each view.
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user-interface A prototypical user-interface may be assi-
gned to each view.

Such constraints can be specified for a col-
lection of interacting entities of different ty-
pes.

for entities

for collections

user-interface
A prototypical user-interface may be assi-
gned to such a working context.
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Before we apply the framework to the two methodologies which we have
selected, we will first have a look at the terminology of object-oriented software
development in general. It is not intended to present formal definitions. Instead
we will concentrate on a short description of the central notions of object-orienta-
tion. Such a terminological reflection is required since the increasing popularity
of object-oriented technology goes along with a remarkable amount of confusion
about the terminology and the future potential of this technology. Rentsch (1982,
p. 51) characterized this situation for the 80s - where on my opinion one could
also increment the years by 10:

"My guess is that object-oriented programming will be in the 1980s what structured pro-
gramming was in the 1970s. Everyone will be in favour of it. Every manufacturer will
promote his products as supporting it. Every manager will pay lip service to it. Every
programmer will practice it (differently). And no one will know just what it is."

The methodology promotes a Data Manipu-
lation Language to allow for retrieval and 
manipulations on the instance level.
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Buildtime- and runtime-support

standards

Dynamic constraints defined in the model 
can be controlled by a DBMS.

DDL and DML are widely accepted or 
standardized.

The model allows for an automated or at 
least partially automated transformation in-
to the Data Definition Language of a DBMS.DDL

tool support

controlling system 
behavior

A set of mature tools to support the metho-
dology is available.

M
od

ul
ar

iz
at

io
n
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namic model. That requires that those parts 
can be uniquely identified.

Static and functional/dynamic aspects of an 
entity type are modelled together at one pla-
ce.

referencing

coherence

Miscellaneous Aspects Description
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3. Terminology

High-level programming or specification languages aim at providing the devel-
oper with means to write a program/specification in correspondence to the lan-
guage used in the real world domain of interest. Although early programming
languages allow to abstract from the characteristics of a specific processor, they
are still hardware-oriented since the data types they provide are usually deter-
mined by the available internal representations. The operations which can be
applied to instances of such data types are usually hardware-oriented as well. The
introduction of abstract data types was motivated by the goal to provide con-
structs that reflect domain level semantics rather than hardware features. Abstract
data types are created by defining a data structure together with a set of opera-
tions which can be applied to it. One essential characteristic of abstract data types
is their contribution to modularization - and thereby to reusability. A compiler
treats data and the operations associated with them as one unit. Furthermore it is
possible to define that data may only be manipulated by operations provided by
the abstract data type they are instantiated from. This allows for an effective pro-
tection against side effects.

The concept of a class is very much inspired by abstract data types: A class is
also defined by a data structure and a set of operations applicable to them. Addi-
tionally to abstract data types classes can inherit features (data structures or oper-
ations) from a superclass. If a class can only inherit features of one superclass,
we speak of single inheritance, otherwise we call it multiple inheritance. We con-
sider an object to be an instance of a class. It is created by instantiating it from its
class which means that the memory required to store its data is allocated and ref-
erences to the operations defined in the class are established. Data protection is of
crucial importance: data of an object are transparent to the external world, they
are encapsulated within the object. Access to data is only possible via services. A
service is defined by the interface of the operations an object offers to the exter-
nal world. The set of services an object provides is sometimes referred to as pro-
tocol. Sometimes it is helpful to generalize over a set of classes although the
resulting superclass does not represent any real world object. In this case we
speak of an abstract class. An abstract class is a class that does not allow for
instantiating objects from it.

Beside encapsulation and inheritance the notion of an object or a class we prefer
includes one further essential feature: polymorphism. It simply means that opera-
tions defined in different classes, representing different semantics, may be identi-
fied by services with the same name. Polymorphism reflects the fact that commu-
nication between objects requires both the identification of an object and of one
of its services. Selecting a service from an object is accomplished by sending it a
message that includes the service identifier and - if needed - a list of parameters.
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Sometimes "object identity" mentioned as one of the essential characteristics of
object-oriented systems. It stresses the fact, that an object has an identity that
does not depend on its state. Therefore this feature is primarily of importance for
distinguishing Object-Oriented DBMS from Relational DBMS.

Beside those software engineering features it is of crucial importance for our
point of view that a class or an object respectively allows for highly descriptive
models of application domains. The underlying idea suggests that objects directly
correspond with objects of a real world domain. Abstracting from a single occur-
rence of an object by introducing classes corresponds with common strategies for
building concepts. This is also the case for generalisation over common features
(introduction of superclasses) and specialisation from a given class (introduction
of subclasses). Polymorphism reflects the common practice that similar opera-
tions, applied to different objects, have the same name.

In order to be independent from the specifics of a certain object-oriented pro-
gramming language and to offer a more descriptive presentation at the same time,
it is desirable for the development of large information systems to first design an
object-oriented conceptual model. On the one hand it consists of the specification
of classes which may include static as well as functional or dynamic aspects. On
the other hand it serves to describe the associations between classes and between
objects respectively.

4. Overview of Object-Oriented Methodologies

Analysing the literature reveals several methodologies for object-oriented model-
ling. The majority of those approaches however - usually published as research
reports or conference papers - is only in a preliminary state. Only a few method-
ologies are documented in a comprehensive way within textbooks or manuals.
Different to data modelling none of them can claim to dominate the scene. The
following overview has been composed at the end of 1993. It aims at being com-
plete but does not claim to be. It is only to give an overview and the correspond-
ing references not to provide a comparison. The methodologies’ description
would not always allow for a detailed comparison. Monarchi/Puhr (1992) offer a
structured, however not very detailed comparison of 23 methodologies. A more
comprehensive, but still somewhat superficial comparison of four selected
approaches is given by Hsieh (1992). Hong and Goor (1993) compare six meth-
odologies by introducing a "supermethodology" on a meta level. Thereby they
offer a neat comparison, which is however restricted to only a few criterions,
which are not always selected in an appropriate way (sometimes they refer to fea-
tures of tools, not of methodologies). Other studies which aim at a comparative
evaluation are those conducted by De Champeaux and Faure (1992), Hewlett-
Packard (1991) and Mannino (1987).
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The number and variance of object-oriented methodologies indicated the dynam-
ics of the research area. The approaches are sometimes differentiated in those
which are to support analysis and those which are primarily thought to be applied
for design. We will not apply this distinction since our focus is directed to the
conceptualization of object models. Methodologies which support analysis
mainly try to help with identifying the concepts that are of relevance for object-
oriented modelling.

The methodologies usually include a meta model for object-oriented modelling -
by which we mean a model that describes how to conceptualize object models. In
this respect they are similar to meta models developed to serve as a basis for open
architectures - like the one proposed by the OMG (1992). Despite this essential
similarity meta models are not included in the overview.

The overview contains two methodologies where the authors (Coad/Yourdon,
Shlaer/Mellor) have described their approach within two volumes. In these cases
the two volumes are listed together. The year indicates the time when the meth-
odology was published, not necessarily when it was first introduced. Only a few
methodologies have been given a name by their authors. 

Author Name Year Type of Publication

Alabisco 1988 C

Ackroyd/Daum 1991 A

Berard 1986 M

Bailin 1989 A

Booch 1990 T

Buhr 1984 T

Cherry PAMELA 2 1987 M

Coad/Yourdon OOA/OOD 90/91 T

Cunningham/Beck 1986 C

Desfray 1990 C

Edwards Ptech 1989 A

Embley et al. 1992 T

ESA HOOD 1989 M

Felsinger 1987 T

Ferstl/Sinz SOM 90/91 A

Firesmith 1992 T

Henderson-Sellers/Constantine 1991 A

Jacobson et al. 1992 T

Johnson/Foote 1988 A

Kadie 1986 R
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While none of the methodologies listed above is extensively used in software
engineering practice, a few of them have gained a high degree of popularity.
Three methodologies are probably of outstanding prominence: Coad/Yourdon
(1990, 1991), Booch (1990), and Rumbaugh et al. (1991). Coad and Yourdon
benefit to a large extent from the fame they have gained with their conventional
methodologies. Both textbooks aim at giving an easily understood introduction
which is enriched by many examples. Furthermore they include a number of heu-
ristics. They primarily focus on static aspects. Such a restricted view may help
those professionals who are familiar with traditional data modelling to stepwise
enhance their point of view. It does however not help to exploit the full potential
of object-oriented software development. Furthermore both textbooks suffer
from a sometimes superficial description and a lack of software engineering
background. For this reason we do not include Coad and Yourdon’s approach in

Author Name Year Type of Publication

Kappel/Schrefl 1991 C

Lee/Carver 1991 A

Liskov/Guttag 1986 T

Masiero/Germano 1988 A

McGregor/Sykes 1992 T

Mullin 1989 T

Nielsen 1988 M

Odell 1992 b A

Page et al. 1989 C

Rajlich/Silva 1987 R

Seidewitz/Stark 1987 A

Robinson 1992 T

Shlaer/Mellor 88/92 T

Rumbaugh et al. OMT 1991 T

Velho/Carapuca SOM 1992 C

Wasserman et al. 1990 A

Wirfs-Brock/Wilkerson 1990 T

Fig. 1: Overview of object-oriented methodologies

T Textbook
A Article in a Journal
M Manual
R Research Report
C Conference Paper
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our comparison.

Different from Coad and Yourdon Booch and Rumbaugh et al. offer a detailed
and comprehensive description of their methodologies. Although both
approaches clearly have some important features in common they are structured
so differently that they can hardly be described together. Therefore we will first
look at Rumbas et al. and afterwards at Botch. Both methodologies do not imply
a clear distinction between analysis and design. Instead it is regarded as a major
advantage of an object-oriented approach that is allows to use the same con-
structs for conceptualizing a real world domain as well as an information system:
“Objects serve two purposes: They promote understanding of the real world and
provide a practical basis for computer implementation.” (Rumbas et al. 1991, p.
21)

5. Object Modelling Technique

Rumbaugh together with a number of colleagues at a research department of
General Electric developed a manual to instruct object-oriented design of infor-
mation systems. In support of the methodology resulting from these efforts,
called "Object Modelling Technique" (OMT), General Electric offers a corre-
sponding CASE-environment. Rumbaugh et al. distinguish between three partial
models: a static object model, a functional model, and a dynamic model. All the
pages referred to are in Rumbaugh et al. (1991).

5.1 The Object Model

The object model serves as the foundation of OMT. Rumbaugh et al. (p. 6) char-
acterize an object model as follows:

"The object model describes the static structure of the objects in a system and their rela-
tionships. The object model contains object diagrams. An object diagram is a graph
whose nodes are object classes and whose arcs are relationships among classes."

The graphical representation of an object model is accomplished by drawing
object diagrams, which exist in two different occurrences: "class diagrams" and
"instance diagrams". Instance diagrams contain specific instances. They merely
serve to illustrate a model by pointing to examples. Therefore they are not an
essential part of conceptual modelling, because - as Rumbaugh et al. (p. 22) put it
themselves: "The notion of abstraction is at the heart of the matter." Class dia-
grams serve to describe classes. A class is specified by a set of attributes and
operations. An attribute in turn is characterized by a data type. For our point of
view it is important to note that Rumbaugh et al. do not allow attributes to be
objects themselves, that is to be instances of a customized class.
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Rumbaugh et al. do not mention if attributes can be assigned a cardinality. How-
ever it looks like they assume the cardinality of an attribute implicitly to be one.
Attributes do not have to be directly represented by data encapsulated within the
object. Instead OMT also allows "derived attributes" (p. 26), which are deducted
from the values of other attributes. We do not think this terminology is appropri-
ate since it is very likely to confuse about the difference between attributes and
operations. Within a class diagram the operations of a class are described by their
names and the required parameters. Rumbaugh et al. recommend to distinguish
between operations which only perform read-access and those that change data.
OMT allows for introducing abstract classes as well as for multiple inheritance.

OMT allows to model associations between classes (pp. 27). For this purpose it
would be appropriate to distinguish associations between classes from those
between objects. Rumbaugh et al. however avoid such a distinction. Generalisa-
tion establishes an association between classes. OMT allows to mark classes as
abstract classes. Associations on the instance level can be specified by various
features. Cardinality (which is called "multiplicity" by Rumbaugh et al., see p.
30) defines how many instances of one class may be associated with instances of
other classes. For this purpose OMT provides three symbols: 1:1, 1:n, and n:m to
be used with the graphical representation of associations. Each class (represent-
ing a set of instances) within an association can further be assigned a role - simi-
lar to the Entity Relationship Model. For special constellations two additional
features are available. Objects within an association may be characterized as
"ordered". Rumbaugh et al. illustrate this by the association "visible on" between
objects of class "Window" and others of class "Screen" (p. 35). Furthermore car-
dinalities can be restricted by introducing so called "qualifiers" (pp. 35). For
instance: While the association between directory and file is usually character-
ized by a 1:n-cardinality, adding the qualifier "filename" and the cardinality 1:1
allows to express that a filename within a directory uniquely identifies a file. In
order to provide illustrative examples OMT suggests to describe associations

Fig. 2: Class diagram OMT. Depending on the level of detail that is desired additio-
nal information can be assigned - like the attributes’ data types (see. pp. 23).
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between particular instances. Such associations are called "links".

Optionally OMT allows to model associations as classes, too (pp. 33). Such an
option makes a lot of sense at first sight: An association may have features which
are not original features of the objects it links together. For instance: If two
objects of class "Person" are linked by an association "married with", a feature
like "date of marriage" could be assigned to the association. This is definitely
more appropriate than assigning such a feature to each of the involved objects.
Nevertheless it has its pitfalls, too. An object should have an identity independ-
ently from other objects. This condition does not hold for an association. Further-
more it has to be taken into account that the distinction between objects and asso-
ciations provides an important orientation for conceptualizing real world
domains: Objects are thought to correspond to real world objects - which can be
linked by associations. The heuristic power of this orientation is seriously endan-
gered by allowing for the slogan "everything is an object". Furthermore it is
accompanied by a confusing increase in complexity: If associations are objects it
is possible that there are associations between associations.

OMT provides a construct to model associations as aggregation (pp. 36). An
aggregation is a specialized association that implies transitivity and anti-symme-
try.1 In principle OMT allows associations to be established between objects of
an arbitrary number of different classes. It is however recommended to use
binary associations only. In accordance with the notion of an object used in
Smalltalk OMT allows classes to be regarded as objects themselves. That implies
the introduction of "metaclasses" (p. 71). Like any class a metaclass is character-
ized by a set of attributes and operations which however can only be applied to a
class not to instances. Typical examples are operations that serve to instantiate
objects from a class or that inform about the number of active instances of a
class. 

In order to add further semantics to an object model, OMT allows to specify
additional "constraints" (pp. 73). They serve to restrict the number of permissible
states of an object or attribute depending on the states of other objects or
attributes. For all of the concepts mentioned above OMT provides a graphical
notation which apparently is inspired by the Entity Relationship Model.

1. "A contains B" and "B contains C" implies "A contains C" (transitivity). Anti-sym-
metry is a constraint that does not allow "A contains B" and "A is part of B" to be
true at the same time.
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Classes within an object model which are closely related (for instance by forming
a particular application) can be grouped within so called "modules" (p. 43). Since
modules are less complex than the whole object model they foster maintainabil-
ity. For this reason classes should be uniquely assigned to a module. For each
module a set of interface for communicating with other modules is to be speci-
fied.

5.2 The Dynamic Model

The operations of a class are described within the object model. It does however
not include any information on the conditions under which a service is invoked.
The dynamic model is intended to provide for the mapping of such control struc-
tures (pp. 84). In other words: While the object model focuses on defining per-
missible object states, the dynamic model aims at describing conditions under
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which certain state conditions occur. A dynamic model is composed of "state dia-
grams". A state diagram should be introduced for each class that allows for a
behaviour of its objects that is not trivial. A state diagram is drawn as graph that
is composed of symbols which represent events and states (and thereby implic-
itly: state transitions).

Events can be organized into generalization hierarchies, too. They may be char-
acterized by attributes and services and they can inherit from superclasses. Such
an approach seems to be reasonable since it is always desirable to abstract from
single occurrences and to build classification schemes. It is however confusing at
the same time: The graphical representation of the generalization hierarchy (p.
98) suggests that events are modelled like objects or classes. An event is usually
associated with the occurrence of certain state of an information system in gen-
eral or of a particular object. The occurrence of an object’s state however is con-
ceptually different from an object. According to OMT an event does not have to
cause a state transition. Instead a condition may be specified that has to be ful-
filled for the event to trigger a state transition (pp. 91). For instance: The event
"the heater has been turned on" will only cause a transition to the state "the heater
is operating" if the condition "temperature less than 20 degrees" is fulfilled.
Introducing conditions in state diagrams helps to reduce the complexity of a net.
Furthermore OMT allows to represent activities and actions within a state dia-
gram. An activity is associated with a state. In order to facilitate the integration of
a dynamic model with an object model it is helpful to model an activity as an
operation of the class the state diagram is assigned to. The examples given by
Rumbaugh et al. are all related to a technical background. A typical example is
the state "ringing" (of an object of class "Telephone") which is associated with
the activity "ring bell". An activity starts with the state it is assigned to and termi-
nates either together with the state or while the state still exists.

In order to keep state diagrams illustrative they may be drawn on different levels
of detail ("nested state diagrams", pp. 94): Several different states may be aggre-
gated to one more general state (like "document is being processed"). A general
state in turn may be decomposed into more detailed states. Different from an
activity an action does not have a relevant duration. An action may be something
like opening a window on a screen or presenting a pop-up menu. Actions are trig-
gered by events. They directly cause a state transition.

Integrating state diagrams to a dynamic model is accomplished by referring to
"shared events". Shared events are events which occur in a number of state dia-
grams. Objects are supposed to be concurrent: In principal they can autono-
mously change their states. Furthermore OMT allows to characterize the opera-
tions of one object as being concurrent. Figure 4 shows the representation of rel-
evant aspects of state diagrams. In analogy to object models state diagrams may
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also be drawn for specific instances. In this case Rumbaugh et al. speak of "sce-
narios".

5.3 The Functional Model

Within the object model operations are merely defined by their interface. That is
their name and - if necessary - a list of parameter types. The dynamic model
informs about events which cause the execution of an operation and eventually
about states which are associated with an operation. Neither the object model nor
the dynamic model defines how an operation is done. For this purpose Rum-
baugh et al. propose the so called "functiona model" (pp. 123). A functional
model does not aim at an algorithmic description of an operation. Instead it
serves to specify the input parameters and the resulting output of an operation. In
order to give a more detailed description an operation may be decomposed into
several smaller operations.

The functional model is represented by data flow diagrams (pp. 127). They are
very similar to traditional data flow diagrams. The only differences: Interfaces of
traditional data flow diagrams are called "actor objects", data stores are called
"data store objects". The process represented by a data flow diagram corresponds
with an operation of a particular class. Processes may be decomposed but not for-
mally specified. Rumbaugh et al. only mention different approaches to allow for
specification (like pseudo-code, pre- and postconditions, etc.).

As with the object model the functional model, too, does not consequently reflect
object-oriented concepts. In correspondence to attributes being only defined by
data types, the information flow between objects is restricted to data. This is a
remarkable reduction of the message flow which may occur between objects. In

off onbutton pushed [ Temp < 20 ]   /turn on heater
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order to connect an object model to a functional an to a dynamic model, it is
required that the three partial models are not developed independently. Instead it
should be intended from the very beginning to name corresponding concepts
within the three partial model in the same way. Coordinating the development of
the partial models allows to establish references between corresponding parts:
operations within a class diagram refer to a process represented in a data flow
diagram. A data flow may refer to a set of attributes - of one or more classes.
Activities and actions within the dynamic model may also correspond to opera-
tions within class diagrams. Figure 5 shows the relationships between concepts
used in the three partial models.

6. Booch’s Methodology

Being a protagonist within the Ada-scene for long Booch is one of the pioneers
of object-oriented modelling. After a number of early publications in the 1980s1

he as presented a design methodology within an extensive textbook (Booch
1990). Although Booch conceptualizes objects similar to Rumbaugh et al. he
does not distinguish between three partial models. His methodology is primarily
focused on the specification of classes. In order to allow for a detailed description
of classes Booch suggests various templates. The methodology not only covers

1. Booch (1982), Booch (1986 a), Booch (1986 b)
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conceptual design ("logical view") but includes also techniques which are clearly
associated with implementation issues ("module architecture", "process architec-
ture"). The following description of Booch’s approach is mainly focused on the
logical view. All the pages referred to are in Booch (1990).

6.1 Class and Object Diagrams

Different from the object models of the OMT Booch distinguihes between class
and object diagrams. This distinction is not to be confused with that between
classes and instances: The elements used in object diagrams are abstractions
from real world objects as well. The terminology Booch reflects different con-
texts and is certainly more consistent. This will become obvious when we get to
associations which can be established between classes or between objects.

Classes can be interrelated by four types of associations (pp. 97): "inheritance",
"using", "instantiation", "metaclass". Generalisation can be expressed via single
or multiple inheritance. A "using relationship" between classes expresses that the
specification of one class requires a reference to another class - for instance to
declare parameters or for implementing an operation - i.e. if an operation needs
the current time and therefore sends a message to class "Time". A using relation-
ship can be assigned cardinalities. It is not question that managing such relation-
ships is of crucial importance for a consistent maintenance of an object model.
Furthermore one has to consider - although Booch does not explicitly mention it,
that attributes (which are called "fields" by Booch) of a class also establish using
relationships since they are defined by a class (not by a data type like in OMT).

There are classes that describe objects which serve as "containers" for other
objects, i.e. arrays, sets, bags, dictionaries, etc. With regard to an information
system’s integrity it is desirable to restrict the permissible classes of the objects
which may be assigned to a container. Booch allows to express an association
between a container class and the classes of the contained objects by introducing
a so called "instantiation relationship". Initializing a container class implies the
instantiation of objects of the associated class(es). Cardinalites may be assigned
to express additional restrictions. Booch allows a class to be considered as an
object, too. In this case a "metaclass relationship" exists between a class and its
metaclass. It means that the metaclass includes operations for instantiating and
initializing the associated class. In other words: The semantics of a class, which
has a metaclass assigned to it, is flexible to a certain degree.

Classes an associations existing between them can be visualized by class dia-
grams. For this purpose classes are represented by so called "amorphous blobs".
In order to distinguish between the different types of associations Booch suggests
a characteristic arc for each type (see fig. 6). Additionally a cardinality can be
assigned to each arc.
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Associations (or relationships) between classes define a linkage between con-
cepts. Booch distinguishes those linkages from associations which exist between
objects. Different from instance diagrams suggested by OMT Booch does not use
specific instances. Instead an object within an object diagram represents any
instance of a particular class. On this level Booch only distinguishes between two
types of associations (pp. 88): aggregation ("containing relationship") and inter-
action ("using relationship"). A using relationship between two objects means
that the objects should be able to interchange messages. In other words: They
have to be able to identify each other. Objects within a using relationship may
play one of three roles. An "actor" is an object, which uses services of another
object without offering services itself. A "server" is an object that offers services
without requesting any service. An "agent" is an object which can act as an actor
and as a server at the same time. Aggregation is a using relationship that is spe-
cialized by adding transitivity and anti-symmetry.

For modelling the message flow between objects Booch gives up the distinction
between interaction and aggregation and only considers the general case: "A rela-
tionship between two objects simply means that the objects can send messages to
one another." (p. 170) Object diagrams are drawn in analogy to class diagrams.
Objects are represented as clouds, too. Unlike for classes in class diagrams the
clouds are drawn by full and not by dotted lines. A message name can be
assigned to each arc representing an association between objects. The message
names correspond with operations defined at another place in the model. Since an
operation includes a definition of the required parameters and its output, an
object diagram implicitly describes the permissible information flow between
objects. That makes them comparable to the data flow diagrams used in OMT -
with one important difference however: They reflect the actual way of informa-
tion exchange in object systems - sending messages. This allows for a seamless
integration with other parts of the model. Within an object diagram objects are

 class name

Fig. 6: Symbols for drawing class diagrams (S. 159)
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identified by the names of their classes. Beside the name of the corresponding
operation a message can be characterized by further features. It can be assigned
one of five synchronisation-types: "simple", "synchronous", "balking", "timeout",
and "asynchronous". (pp. 126) Furthermore it can be specified whether a mes-
sage is sent periodically or not. Since the description of classes (see below)
includes similar characteristics they have to be checked for consistency.

6.2 Conceptualization of Classes

Booch allows to specify classes in a much more detailed way than OMT. For this
purpose he introduces so called "class templates" which are structured as follows
(p. 164):

Name: identifier
Documentation: text
Visibility: exported | private | imported
Cardinality: 0 | 1 | n
Hierarchy

Superclasses: list of class names
Metaclass: class name

Generic parameters: list of parameters
Interface | Implementation
(Public/Protected/Private):

Uses: list of class names
Fields: list of field declarations
Operations: list of operation declarations

Finite state machine: state transition diagram
Concurrency: sequential | blocking | active
Space Complexity: text
Persistence: static | dynamic

In order to reduce the complexity of large models, a set of classes can be grouped
into categories (similar to the modules suggested by OMT). The feature visibility
serves to define, whether a class should only be available within its category
(which is surprisingly not included in the class template) or whether it may be
imported by another category. Cardinality of a class describes how many
instances may coexist (0: no instance has to exist, 1: exactly one, n: an arbitrary
number). The permissible number of superclasses of a class depends on whether
single or multiple inheritance has been chosen for a particular model. If the lan-
guage used for implementation allows for it, a metaclass may be assigned. The
use of "generic parameters" indicates - among others - that Booch is very much
influences by his work on Ada. A generic parameter is a variable part of a generic
class (as it may be defined in Ada or Eiffel). In order to create a usable class from
a generic class, its generic parameters have to be instantiated (for instance with
specific operations). 
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While a list of operations and a list of attributes ("fields") is essential for a class
definition, a list of used classes seems somewhat redundant: Attributes (by their
classes) and operations (by their parameter classes and other references) establish
using relationships anyway. Different to the class itself Booch does not allow for
assigning cardinalities to attributes. Attributes, operations, and associations can
each be characterized by one of three access levels. "Private" means, that they
cannot be used from outside, "protected" is to say that there has to be some sort
of privilege in order to get access, while "public" means that any object can use
them. The distinction between "interface" and "implementation" at this point is
confusing and redundant anyway: During design one should not bother with
details that do not add semantics to the conceptualization of a class but only to its
implementation. Booch is aware of this fact and points out, that those specifica-
tions are optional (p. 165). As already mentioned above an attribute’s semantics
is defined by a class not by a data type. An attribute can be either characterized as
a class variable (it is only available on the class level - if you consider a class as
an object, too) or as an instance variable (available within every instance). While
such a distinction may be important for implementation purposes (provided the
implementation language allows for it) it is again kind of confusing on the con-
ceptual level. 

Assigning state transition diagrams allows to describe the permissible behaviour
of a class. The slot named "concurrency" is intended to describe how communi-
cation with other objects is synchronized. While synchronisation is an inherent
feature of sequentialized processes, concurrent processes may be synchronized in
two ways: "Blocking objects" are objects, which are non-active, that is they can
execute operations only after they have received a corresponding message.
"Active objects" have an autonomous behavior, that is they may invoke their
operation themselves. In other words: A passive object’s operations are sequen-
tialized (whereas a number of objects may execute operations in parallel), while
active objects can execute their operations concurrently.

With regard to implementation issues "space complexity" allows to specify the
memory required by one object of the class. It is doubtful if such information is
helpful during analysis. The exact amount of memory depends on the implemen-
tation language and on the hardware anyway. An object’s "persistence" can be
characterized as "static" or "dynamic" - depending whether its lifetime is deter-
mined by the program it is used in or not. Again it can be argued that this may be
a decision that is only relevant for implementation purposes.

Beside classes Booch allows to describe so called "class utilities". A class utility
corresponds with similar concepts in programming languages like Ada and C++
("free subprograms"). On my opinion they are not appropriate for an object-ori-
ented design methodology since they to not correspond with the object-oriented
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paradigm where operations are only provided by objects.

In order to instruct the specification of operations Booch suggests another tem-
plate (p. 166):

Name: identifier
Documentation: text
Category: text
Qualification: text
Formal Parameters: list of parameter declarations
Result:: class name
Preconditions: PDL / object diagram
Actions: PDL / object diagram
Postconditions: PDL / object diagram
Exceptions: list of exception declarations
Concurrency: sequential | guarded | concurrent | multiple
Time Complexity: text
Space complexity: text

According to the grouping of methods of a class used in Smalltalk Booch allows
to categorize the operations of a class. "Qualification" reflects a concept pro-
vided by programming languages like CLOS, where Operations can be qualified
- like ":before", ":after", ":around". The list of parameter declarations contains
the classes of the parameters which have to be included in the message that
requests the operation. An operation’s "result" is defined by the class of the
returned object. Booch provides a number of different means to characterize an
operation’s flow of control. Non of them is mandatory. While pre- and postcondi-
tions only define additional constraints at certain points in time, "actions" serves
to describe the flow of control. For this purpose Booch recommends to use a pro-
gramming description language (PDL) - in other words: pseudo-code. Alterna-
tively it can be referred to an object diagram (see above) at this place. An object
diagram however does not define the control flow of an operation but only the
permissible message flow. Booch does not specify the level of detail appropriate
for the description of "actions": "... an appropriate level of detail for each opera-
tion should be chosen, given the needs of the eventual reviewer." (p. 167) Excep-
tions which may occur during the execution of an operation, should be character-
ized by an exception type, whereas exception types should be defined in a unified
way for the whole model - like "printer out of paper", or "read error accessing
disk" ... This is essential for implementing a unified exception handling for a
whole information system.

"Concurrency" allows to define, whether an operation may be reentrant or not
and how synchronisation should be accomplished. These specifications need to
be compatible with those made about concurrency within the class template.
"Time complexity" and "space complexity" serve to capture information about
performance and the needed memory.
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6.3 Dynamic Aspects

Although operations and message flow can be described on a very detailed level,
that does not tell anything about the conditions that cause an operation to be
invoked. In order to cover these temporal and behavioural aspects Booch sug-
gests "timing diagrams" and "state transition diagrams".

Like OMT Booch uses state transition diagrams to describe permissible state
transitions of the instances of one class. The states should possibly correspond to
certain states of an objects attributes. The transitions are characterized by an
event and a particular operation of the class. 

In order to describe an information system’s behaviour it is not sufficient to look
at the behaviour of objects in an isolated way. Instead it is required to take into
account the interaction of objects of a number of classes. The timing diagrams
suggested by Booch allow to illustrate the sequence in which operations of vari-
ous objects are executed. Such a diagram - like it is also used to illustrate the
allocation of a processor’s capacity within the process management of operating
systems - serves to indicate to which degree operations can be executed inde-
pendently. This is of special importance when objects can be assigned to one of
many processors. A timing diagram however does not contain any information
about the events that trigger the execution of an operation. Therefore they are to
be seen as a supplement to state transitions diagrams. Their integration with other
diagrams is straightforward. It can be done be using unified operation names.

7. Comparative Evaluation

Both OMT and Booch’s methodology are suited to cover the essential aspects of
system design. Booch’s approach is certainly more sophisticated and supports a
more consequent object-orientation. One the one hand this is due to the terminol-
ogy he uses1, on the other hand Booch provides a clearer orientation for integrat-
ing the different aspects of a model than Rumbaugh et al.: Classes and their fea-
tures serve as common references for all aspects. This advantage however is
reduced by the confusion that Booch produces by including concepts which are
language specific (i.e. "class utilities", "generic parameters").

While OMT sometimes lacks an appropriate degree of precision and detail2,

1. His definition of a class, however, is not convincing on my opinion. Booch (1990, p.
93) defines a class as "a set of objects that share common structure and a common
behavior". Such a definition can easily be confused with the set of existing instances.
Furthermore it can hardly be applied to abstract classes, which Booch explicitly
allows for.

2. Hsieh (1992, p. 26) presents - however without giving convincing reasons - a quite
different judgement: "By far we feel that Rumbaugh’s methodology is the most com-
prehensive and complete one ...".
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Booch’s methodology is somewhat overloaded: It is not only restricted to design
aspects but also includes implementation issues. This may be caused by the fact
that Booch’s perspective is clearly influenced by his work on the design of pro-
gramming languages. It does not have to be a mistake to consider details, which
may become relevant only during implementation, in time. In order not to harm
the descriptive power of a conceptual model, I would prefer to introduce an addi-
tional level of abstraction for describing those details. In order to allow for a pre-
cise definition of associations it is certainly helpful to distinguish between
classes and objects. However, the different types of associations Booch suggests
are confusing sometimes. It is for instance questionable whether there is a differ-
ence between a "using relationship" on the class level and a "containing relation-
ship" on the object level.1

The following comparison of both methodologies refers to the evaluation frame-
work presented above. 

1. The second case is more special than the first. But I doubt that this difference is of
any importance for system design. 
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8. Concluding Remarks

We can summarize that both methodologies allow for designing comprehensive
conceptual models on a high level of semantics, where certain restrictions apply
to OMT which is in part more data- than object-oriented. Both approaches allow
to integrate the different modelling aspects, Booch however provides better guid-
ance in this respect. There is a little difference in preparing the transformation to
the implementation level. Both methodologies are intended to support object-ori-
ented programming languages. While the examples Booch provides cover a
wider range of programming languages, Rumbaugh et al. give examples for the
transformation into a relational model, too. General Electric as well as Booch
offer tools to support their methodologies ("OMT-Tool" and "Rational Rose").
Additionally both methodologies are supported by other tools of independent
vendors.

The design of user-interfaces is only supported on a technical level - for instance
by using state transition diagrams - not on an application level. Thinking of the
increasing number of libraries which support the implementation of graphical
user-interfaces a mere technical view does not seem to be sufficient. Instead it
could be referred to constructs like windows, widgets, etc. For this purpose a
design methodology should provide an appropriate selection of such constructs
and foster their integration with other aspects of the model.

Both methodologies promise obvious software engineering advantages over con-
ventional approaches of conceptual modelling. Nevertheless many developers
will probably find their contribution to be doubtful. Both methodologies are
rather complex which is specially true for Booch’s approach. Therefore it
requires a remarkable effort to apply them - although the textbooks offer a com-
prehensive description. While a conceptual model is a document intended for
software developers at first place it should ease communication with domain
experts as well. The graphical notations used in both methodologies are hardly
satisfactory in this respect.

Rumbaugh et al. consider the transformation of their model into the schema of a
RDBMS. It is however no question that an OODBMS is required in order to
exploit the potential of object-oriented design to its full extent. That in turn
requires standardized object models. For this reason the work of organizations
like the OMG is of crucial importance. However, the current state of the art (see
for instance OMG 1992) indicates that there is still some substantial research to
be done. 
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