Published in: McGregor, R. (Hg.): Proceedings of the Third Australian Conference on Infor-
mation Systems. Wollongong/Australien 1992, pp. 675-690

A TOOL-SUPPORTED METHODOLOGY FOR DESIGNING
MULTI-PERSPECTIVE ENTERPRISE MODELS

ABSTRACT

Development and organisational implementation of corporate information systems are still
afflicted with severe economic problems. They are partially due to the fact that advanced
software engineering methodologies are rarely applied. Moreover requirements analysis
often does not produce satisfactory results. While user participation is widely agreed to be a
prerequisite of successful system design it is often hard to accomplish. System analysts and
the various users have different views of an organisation which makes it difficult to commu-
nicate efficiently. Object-oriented enterprise modelling can contribute to improve this situa-
tion. It encourages conceptual design using semantically rich domain level concepts. This is
not only a prerequisite for implementing highly integrated information systems. Enterprise
models are also suited to establish a common universe of discourse for both system develop-
ers and users by providing illustrative representations of organisations which are based on a
solid software architecture. The paper introduces a conceptual framework for the design of
multi-perspective enterprise models which does not only incorporate advanced object-ori-
ented methodologies but also takes into account epistemological, organisational and eco-
nomic aspects. A computer based integrated design environment is presented that is based on
this framework. It supports the interactive development of object-oriented conceptual mod-
els. For this purpose it provides graphical representations of static as well as dynamic aspects
of organisations and allows for analysing the effectiveness of office procedures.

INTRODUCTION

Computer based corporate information systems are of crucial importance for most business
firms. There is a great amount of experience with implementing and using information tech-
nology. However, a satisfactory integration of information systems is still more likely to be
the exception than the rule.There is a wide range of reasons which contribute to this phenom-
enon. During software development there is often not enough emphasis on a thorough and
detailed requirements analysis. The participants in requirements analysis - like designers,
users and managers - do not share the same view of the problem. In other words: when they
talk about the enterprise or features of information systems they do not necessarily use the
same language. Development suffers from friction between the different phases - information
gets lost or is misinterpreted. People responsible for design and implementation are not suffi-
ciently qualified. “To most people, including a surprising number who program computers,
software engineering is a mystery” (Macro/Buxton [1987, p. vii]). Software development
often starts - more or less - from scratch, reuse of application domain concepts rarely hap-
pens. Thereby costs for development and maintenance are very high, the results however are
often poor - from a technological as well as from an economic point of view. The software
architecture does not sufficiently reflect needs for maintenance and adaptability. Integration
of the components of an information system is not satisfactory. Information systems are not
always implemented within an organisation such that they support the business needs effec-
tively. While most executives are aware of the economic importance of information systems
they are usually not capable of evaluating their quality. IS-managers on the other side often
lack a substantial understanding of enterprise goals (Lederer/Mendelow [1987]).

These problems tend to get even more complex. Planning and implementing of information
systems suffers from the burdens of old technology (“the horrors of the past”, Meyer [1990],
p. 83). At the same time new technology is emerging (like CASE, graphical user interfaces,
object-oriented programming etc.). While it is difficult enough for an IS-manager to keep
informed it is almost impossible to evaluate the different options in a satisfactory way. On the
other side managers who are responsible for planning and organising the business face
numerous new challenges. With markets becoming more and more international competition
is increased. Thereby it is required to evaluate different options to reorganise the business -
like outsourcing, value added partnerships, electronic data interchange, concurrent engineer-
ing etc.

Since management of information systems as well as the issues of organisational design are
highly complex matters on their own, it is not surprising that people tend to have an isolated
scope of the problem. It is almost necessary in order to deal with complexity. The problem
itself however requires to integrate the different scopes somehow. There has been awareness
for this challenge for long. It is commonly agreed that it is necessary to improve the chances
for participation. Real participation requires a solid understanding of the problem. Since peo-
ple tend to perceive and conceptualise reality in numerous different ways representation of
the domain of interest is a core issue. Within software engineering conceptual modelling
aims at “the development of descriptions of a world/enterprise/slice of reality which corre-
spond directly and naturally to our own conceptualizations” (Levesque/Myloupolos [1984, p.
11]). Object-oriented methods promise to be better suited to accomplish this goal than tradi-
tional data oriented methods: it seems to be more natural to describe objects as abstractions of
real world entities than to reconstruct reality by artificially differentiating data and opera-
tions. Furthermore: enterprise wide object-oriented models promise to foster integration as
well as software reuse on a high level (see below). Methodologies for object-oriented analy-
sis and design however are mainly focusing software engineering needs. Research in system
analysis and design that originates from social sciences on the other side puts more emphasis
individual perception and social interaction. It resulted in methodologies which focus on the
process of participation (Mumford [1983]), on the comprehensive representation of individ-
ual concepts (Checkland [1981]) as well as in theories on organisational change (for an over-
view see Keen [1981]). They lack however a software engineering perspective.

The project “Computer Integrated Enterprise” that was started at the German National
Research Center for Computer Science (Frank/Klein [1992]) in 1990 was intended to inte-
grate these different scopes. Particularly the project goals were to

* develop a methodology as well as a set of tools to support the design and maintenance of
enterprise models.

» thereby provide a representation of organisations that is illustrative for business people
and takes into account the requirements of object-oriented analysis and design at the same
time.

» demonstrate the benefits of object-oriented analysis and design in a real-world application
by comprehensively modelling a specific enterprise.

ENTERPRISE MODELS: PROSPECTS AND REQUIREMENTS

While the notion of enterprise models becomes more and more popular - within the research
community (see for instance Profrock et al. [1989], or ESPRIT [1991]) as well as in the area
of commercial software development (IBM [1990]) there is no detailed consensus on what an

enterprise model should look like. Enterprise models are supposed to provide a suitable foun-
dation for integrating information systems. In order to develop requirements for the design of
enterprise models we will first analyse the characteristics of integration.

Dimensions of Integration

Within the context of information systems the term integration is usually restricted to the dif-
ferent components of the system. The brief overview on the overall problem however indi-
cates that other dimension of integration should be taken into account as well:

* integrating the different phases of the software life-cycle

 integrating the different roles and perspectives of those who analyse, design and use an
information system

* integrating the information system with the organisation
* integrating the information system with those of business partners

Research Area

(_ Management Science)

(Computer Science} Psychology

4)

|
(System Anal t) Enterprise Supplier
e \ Model j

C Document-Processing>

Roles

Business Partners

Applications

Fig. 1. Dimensions of Integration fostered by Enterprise Models

To find out what is required to accomplish integration and how different levels of integration
can be distinguished we shall first look at the components of an information system. Integra-
tion implies communication. For components to be able to communicate there has to be a
common semantic reference system. In other words: they need to have corresponding inter-
pretations of the symbols they interchange as well as common unique names for these inter-
pretations. Data types, functions of an operating system or relations within a database are
examples for such reference systems. The more semantics is incorporated in the concepts that
can be referred to the higher is the level of integration. The amount of semantics itself
depends on the number of permitted interpretations. A data type like an integer can be inter-
preted in numerous different ways - depending on what real world entity it represents. A con-
cept however that directly represents a real world entity reduces the set of possible interpreta-
tions. Is there any indication for the appropriate amount of semantics? It seems to be desira-
ble to provide concepts that incorporate enough semantics not to bother any of the involved
components with the need to reconstruct meaning for further processing. For instance: defin-

ing a concept “account” rather than only providing more general concepts that could be used
to implement an account in a convenient way. If you then include a certain graphical repre-
sentation of an account into a document the document processor should know the semantics
of an account - which would improve the chances for powerful interpretations. Considering
the need for flexibility and reusability however recommends to also provide more general
concepts that allow for specialisation.

Common semantic reference systems are not only a prerequisite for technical integration.
Integration of different human perceptions of reality also requires common reference sys-
tems. They are provided by terminology (not to speak of language in general), by culture
(which Luhmann [1984, p. 224] defines as a reservoir of common themes that are possible
subjects of communication), and of organisations as well, which is emphasized by Weick
[1979, p. 3] who suggests that organising should be defined as “consensually validated gram-
mar for reducing equivocality ...”. Different from formal systems a certain amount of ambi-
guity is not only tolerable but sometimes even helpful to cope with complexity.

Perspectives on the Enterprise

What are the implications of these thoughts for the design of enterprise models? First: for
enterprise models to serve as promoters of integration they need to offer different levels of
abstraction. There has to be a level that is appropriate for software development and integra-
tion of (software-) technical components. Furthermore it has to include representations that
correspond with users” conceptualisations of reality. Considering the numerous views/con-
ceptualisations (see for instance ESPRIT [1991], Zachman [1987]) one can think of it is nec-
essary to make a suitable selection. We decided on three main levels of abstraction:

* astrategic view
* an operational/organisational view
* an information system view

Designing and implementing a corporate information system requires to have a solid idea of
how the operations of the firm are organized. Since an information system should be effec-
tive for a long time it is desirable to consider strategic options in time. The strategic view,
which is not subject of this paper, is described by concepts like business goals, value chains
(Porter [1985]), portfolio analysis, corporate culture etc. Within the organisational view we
differentiate between three perspectives. The macro-view describes the main organisational
units or functional areas of an enterprise, like marketing, accounting, controlling, personal
etc. On a more detailed level concepts like roles, functions, objects, business rules, and
scenes (for instance: sales negotiations) are described. Finally there is a dynamic level to rep-
resent office procedures in a way that is illustrative for managers. The informations system
view is focused on what traditionally is called conceptual model (for a elaborated definition
see Brodie [1984, p. 20]). Since the concepts that are used on the three levels are different it
is crucial to translate or mediate between them, for instance by linking concepts that are
somehow related.

Implications for an Environment to support the Design of Enterprise Models

An enterprise model that is to serve as a foundation for information systems requires a suita-
ble software engineering approach. At the present time an object-oriented approach seems to
be the best choice. The reasons that were most important for us:

* Objects allow for describing concepts on a higher semantic level than traditional data
structures. Thereby they are better suited to directly correspond to real world entities.

* Encapsulation promotes a modular architecture and thereby flexibility of information sys-
tems.

* Inheritance allows for conveniently modelling generalisation and specialisation.

Considering the complexity of the overall design process it is important to provide a tool that
supports a systematic approach. Such a tool should enforce a certain methodology for object-
oriented analysis and design. It should prevent the model from becoming inconsistent by
checking for ambiguity and contradictions. Participation requires a substantial understanding
of how the system will look like. Therefore the tool should allow for fast prototyping. On the
strategic as well as on the organisational level there may be concepts which cannot be formal-
ised although they can be comprehensively described. In order to link them to related con-
cepts it is desirable that the tool includes some kind of hypertext-features.

It is often argued that an information system should be adapted to the organisation, not the
other way around. While such a request seems reasonable at first sight (specially when you
consider how restrictive today’s software sometimes is) it is not completely convincing. This
is for two reasons. First: a business firm’s actual organisation does not have to be efficient.
Adapting an information system to it means to put effort in reconstructing inefficient struc-
tures and procedures. Second: in order to exploit the potential of information systems it can
be suitable to rearrange an organisation that had been efficient on a lower level of automa-
tion. Like Schank [1985, p. 23] states for a wider context: “The first users of cars and com-
puters had to struggle to make these completely new machines operate within the limits of the
systems that were designed for an earlier world. ... Computers are severely limited by the
world views and ideas that have preceded them.” Similarly Savage [1990, p. xii]: “Could it
be that we are putting fifth generation technology in second generation organizations?”” Tak-
ing these thoughts into account recommends mutual adaptation of organisation and informa-
tion technology. To reduce the complexity of this task it is desirable that a tool allows for
simulating organisational alternatives.

Value Chain

Strategic View
9 Designer

Value Chains
Goals Corporate Culture
Strategic Options

Value Chains

Value Activities

Resources \
Organizational View Costs :
- Office Procedure
Tasks Eyents Rgls_s t Common Object Mode Designer
Office Procedures ~ 2/¢¢S .
Business Rule Object Model Activity Blocks
Designer
-- Procedures
. Classes Attributes Procedure Documer]ts
IS View
Constraints Roles ~ States
Classes . If’rocedures Default Widgets User-Interfaces
Associations Serviced
Transactiond!ser-Interface Associations Throughput

Figure 2. Tools of the design environment and their relation to different views

of the enterprise

The environment we developed is a first attempt to fulfil the requirements listed above. Cur-
rently it consists of three tools which are enhanced by a hypertext-system. Each of the tools
covers at least one of the three main levels of abstraction (see fig. 2). The Value Chain
Designer (which is not subject of this paper) allows to design and analyse strategic options by
applying Porter’s concept of value chains. Value activities, the core elements of value chains,
are in part described by the resources and business processes they use - which are described
on the organisational level. The primary scope of the Object Model Designer is the I1S-view,
while the Office Procedure Designer covers both dynamic aspects of the IS-view and of the
organisational view. All the tools have been written in Smalltalk-80 within the Objectworks®
environment.

OBJECT-ORIENTED REPRESENTATION OF ORGANISATIONS

During the last years a number of object-oriented analysis and design methodologies have
been developed (Coad/Yourdon [1990, 1991], Booch [1990], Rumbaugh et al.[1991]). Our
approach is inspired by Booch and Rumbaugh et al. They suggest three design levels for an
object-oriented conceptual model: a static object model, a dynamic model, and a functional
model. We regard an object model as the core of an enterprise model. While an object model
can be sufficient to capture all the semantics you need for implementation it is definitely not
sufficient to cover all important aspects of analysis and design. It hardly allows for compre-
hensively expressing temporal and functional semantics of an information system. Usually
state transition diagrams (dynamic model) and data flow or message flow diagrams (func-
tional model) are recommended to fill this gap. However, for our purpose these techniques
have two shortcomings. They do not provide a representation that fits the average user’s per-
ception of a business procedure. Since state transition diagrams describe the behaviour of
objects of a certain class they can hardly be used to support the design of procedures from
preexisting components. The Office Procedure Designer is intended to provide a more illus-
trative representation. It allows to define temporal as well as functional semantics. Further-
more our experience suggest that procedures are a preferred way for users to describe their
view of the domain they work in. Thereby the description of a procedure can also serve as a
heuristics to identify required objects/classes.

Although generic enterprise models that fulfil the requirements of a wide range of firms are
an attractive research vision it is not possible to develop such models from scratch. You have
to start with one enterprise of a particular domain. Applying the same approach to a set of
similar enterprises allows for comparatively analysing invariance and differences. Then there
is a chance to condense the specific model to a configurable generic model of a certain scope.
The domain we started with is car insurance within an insurance company. The examples
given below are taken from this domain. The following sections outline how to design object
models and office procedures within the environment we have developed (for a more detailed
description see Frank [1992]).

Conceptualisation of an Object Model

An object model consists of classes and relationships between them. While it is often argued
that objects offer a natural way of describing reality it cannot be neglected that the notion of
an object within a conceptual model has to be oriented towards a certain formal structure - no
matter how people prefer to describe entities they perceive. An analysis/design methodology
should provide analysts and users with a suitable and comprehensive concept of an object and
guide the mapping of real world domains to object models. An object/class is modelled by
describing attributes and services. Additionally we use the category constraints.

An attribute is regarded as an object that is encapsulated within the object. Among others it is
described by class, cardinality and default widget. Specifying an attribute’s class is a prereq-
uisite for typing. Cardinality has to be defined in min., max.-notation. For instance: a cus-
tomer’s telephone number may have cardinality 0,*. In order to allow for generating proto-
typical user-interfaces it is possible to assign a default-widget to each attribute. One can also
define a label that is to be presented with the widget. Additionally the size of the widget can
be specified. This approach is a first attempt to deal with the complexity of user interaction. It
cannot be completely satisfactory: the way a value of a certain class is presented to the user
often is not unique but varies with the context of interaction. For instance: you can display a
name using a scrollable text view, a listbox etc.

Services are characterized by their interface, where each attribute is defined by its class, and
a natural language description of the function they fulfil. Furthermore a precondition and a
postcondition can be specified. If the service returns an object, this object’s class can be spec-
ified. While attribute and service descriptions already include constraints (like attribute-
classes, pre- and postconditions) there may be other object-constraints that cannot be
assigned to just one attribute or service. This is the case for integrity rules which interrelate
different attributes or services. We differentiate between two types of constraints: guards and
triggers. A guard is a constraint that prevents the object from merging into a certain state. For
instance: the resale-price assigned to a product should never be less than the purchase-price.
A trigger on the other hand prevents an information system from becoming inconsistent by
not reacting if some condition is fulfilled. For instance: If a customer who holds a car insur-
ance policy has been driving without an accident for more than three years and has not
assigned the highest claims bonus yet, his claim bonus has to be increased.

Objects within an information system are interrelated in various ways: objects may use serv-
ices from other objects, they may be composed of other objects, their existence may depend
on other objects etc. Taking such associations/relationships into account is crucial for main-
taining the integrity of an IS. Therefore they are commonly regarded as an essential part of an
object model. From a software engineering point of view it is desirable to limit the number of
association types that are used. But in order to design illustrative as well as semantically rich
domain level model we prefer associations which may include domain specific semantics and
which are labelled with names that are known in the application domain. Having a wider
range of different types of associations allows to define views on aspects of the object model.
If somebody is interested in an organisational schema one could filter all classes which are
associated via “is subordinated” or “is superior”. A relationship may have features that can-
not solely be assigned to any of the connected objects. For instance: information on the rela-
tionship attendsTo between an insurance agent and an insured person like “when was the
relationship established?” or “where was it established?”. For this reason we adopt the
approach Rumbaugh et al. suggest: associations may be modelled as classes. The permissible
cardinality range of an association has to be specified in min, max-notation. Each of the
involved classes has to be assigned a tuple with the minimum number of instances that have
to be part of the association and the maximum number that is permitted. One association
class is thought to provide a substitute for multiple inheritance that even offers some advan-
tages over the original. An object can import another objects” features by establishing a “has
role”-association (which is sometimes referred to as “dynamic” or “object-level” inherit-
ance). The roles that are assigned to a class can be ordered to resolve possible naming con-
flicts. If you want to describe an employee who is a manager as well as a salesperson you do
not define a class “managing salesperson” that inherits from manager and salesperson.
Instead employee is assigned the roles manager and salesperson in a certain order.

o

3|

Fxb]

=T _ =1
EE L0111 | E——

aoueInsU| ey

Jaubisaq 1alqo _H_
o]
7] 7] payosjoad g uopezuouyny = -
pUas gL < SWIED pajl) 10 JAgUnu _ —————— || ------------ sad1AaQ
swreppapias

SWIReD Joaya awie ssed SUDNEII0SSY
| < SWIED JUAUND JO J3GUinu Ji Jafeuepurels ssaalqo sasn uossadpansu — fununooay
SWIIE|D JO UORI3[|00 (sUnjal JeJpadnsul ;I

aspey paseasoul uopuodsod swreppajy sanofares

0} pifeA 198 ‘SAep OF e} adow Jo) af Jou }ENW shuog swiep ofie saeal uopuodald pIreAARUaUND
W 0> unossywnwasd jo asuereq Ji |y Z weyy Ssa] WD 1SE| J0 ayep JI | s izaurered | swepjualng weansul Aed paL
= = ~ 7] +SNuUogSueR BWINI0G ANPa30dd
siafifiu SPRIEND WauwaD EERITIE] up A UOSA
SIUIRIISUOT) 18z 1 a._.sm_._.__wm.mzmﬂ
= unodsgwniwad uosdagpainsu|
ou o pAinsy piodal winnadd Hap
53y aslanll feinaiped e Ay pamas swre|d 1] AlfeuIpIED Hew aaquingy Asnod NPas0d J04 WD)
ayy pue [edauali U uoslagpainsu) 1 AUfEUIBIED U wnnuaug pred wrep
. auy} o paoaal syl uo Buipuada o) :
H _H_ _H_ wE yriop i y I 4] mavaxatuerd & jaBpiy uressg awAed Jopoiaw JNodareinsurne)|
aliqowong . . Buubig 0 ayer ualnedagsulie)
H _H_ _H_ - renaned B) payul pue uosiag papaayoud o ongnd a0 & eBapang-ssanoy UBWAE1SE101ED angowomy
. paINSUI UE A0 BIOY §1 3 "3IURINSUL O aun|jTenue) 55810 NG JUNOWYPaIBA0D aouensuUBpIIYY
19BQU0D B §] A)|0d8aUBINSUMED ¢ - snuogswrep | 1Y o _______
Adljodaauednsulie) uo sjuawuod Aoljodasueansu] 4 sse|liadng sangupy r3 SE55E|D
5304 :
UOeIdOSSY _H_ Adljodasueansupery ssen paupg ADNOJaouednsul A o) dn saunjeal paquayul moys
I
L 4031p3 Pafqo @ |

Figure 3. User-interface of the Object Model Designer

The Office Model Designer encourages the description of a real world domain using the con-

ceptualisation introduced above. It allows for a graphical representation of an object model
(see screenshot in fig. 3). Furthermore it provides dictionaries of already defined classes and

checks for name conflicts. In order to facilitate searching for already defined classes as well
as to support a systematic approach to find new classes, the classes are grouped into catego-
ries. The definition of categories should be oriented towards domain level concepts. Some of
the categories we have chosen: accounting, car insurance, marketing, people, documents,
devices, associations. A class may be assigned to more than one category.

Modelling Office Procedures

The object model describes the available classes, their services and - to a certain extent - what
object states are permissible. It does not explain which objects are needed and how they are
used in order to fulfil certain tasks. The concept of an office procedure is thought to provide a
framework for describing these aspects.

We regard a procedure as an ordered graph of activity blocks (which I will refer to as activity
as well), which can be represented as a semantically enriched Petri net. Each activity block
(for a similar conceptualisation compare Lochovsky et al. [1988]) is an object associated with
a certain role of an employee who is responsible for this particular task. An activity block can
be modelled as a procedure itself. The information that is processed within a procedure is col-
lected in an object of class “ProcedureDocument”. In the case of concurrent processing spe-
cial constraints have to be fulfilled (see below). Each activity block requires a certain state of
the document as a precondition. Processing the document within an activity results in one or
more new states of the document. Unlike a physical document it can be worked on at differ-
ent locations at the same time - provided there are constraints which prevent inconsistent
states.

A procedure’s semantics can be divided into the following categories:

General constraints. For instance: A procedure must not contain deadlocks. There must not be
endless loops. There should be no task that cannot be reached by any chance.

Constraints on activities. For instance: An activity requires a certain state of a certain docu-
ment type. It must produce one of a set of possible document states.

Constraints on documents. For instance: The variable parts of the document may be filled only
with objects of a certain class. A part of the document that is processed within one activity may
not be processed within another activity that works on the document concurrently.

Dispatching. For instance: After an activity block s postcondition is fulfilled its successor has
to be triggered, after an activity has been started, an employee who can take over the associ-
ated role has to be informed. It may be important to first check an employee’s queue of activ-
ities before dispatching a new activity to him. Dispatching has to be done according to organ-
isational rules, like: only one employee may be responsible for the whole procedure or for a
collection of activities.

Exceptions. For instance: Within an activity block an inconsistent document state is detected
that had been caused in a preceding activity. An employee becomes sick before completing
the activity.

It is a crucial question for the design of a dynamic model to decide where to locate this
knowledge. While general constraints should be checked already during the design process,
all the other control knowledge can only be applied when the procedure is active. Each proce-
dure is supervised by a procedure manager, which is an object that coordinates procedures of
a certain domain. Whenever an event occurs that should trigger a procedure the procedure
manager is notified. It then looks up its description of the particular type of procedure and
instantiates the first activity block as well as the procedure document. Each activity block is
responsible for transforming the document’s state to one of the states that are defined as post-

conditions. The procedure manager and the procedure document serve as “glue” to link the
activity blocks. If an activity has terminated with one of its postconditional document states it
notifies the procedure manager. The procedure manager looks up its list of available (human)
operators and their queues of work to be done. Depending on its dispatch knowledge it will
then instantiate an appropriate activity object and move it into the queue of the selected clerk.

The Office Procedure Designer is a tool to instruct analysis and design of office procedures
according to the outlined architectural framework. For this purpose it provides the analyst/
designer with an interactive template for systematically describing a procedure’s tasks. It also
includes a graphical editor that allows to model office procedures in an illustrative way using
a set of graphical icons (see fig. 4). The icons represent either document states or tasks:

\
% an activity that requires user-interaction

(I%T an activity that is not computer supported at all

,[eg:u_ an activity that itself is modelled as a procedure
an activity that does not require user interaction

a procedure document’s state

Figure 4. Icons used for the graphical representation of office procedures

The first step of describing an office procedure as a net of activity blocks implicitly includes
the definition of temporal semantics. Activity blocks can be ordered sequentially or concur-
rently which implies a notion of before, after and simultaneous. This allows the tool to per-
form certain consistency checks. For instance: detecting deadlocks, or an activity block that
produces a document state that had already been produced before (the last example is only a
strong indicator of inconsistent design).

Within the next step the activities are characterized by the structured, semi-formalized
description that is encouraged by the interactive-template. Thereby three main aspects are
differentiated: organisational, informational, and control. Organisational aspects are
expressed by assigning a responsible employee (represented by an appropriate role, like
“Manager”) and a department both to the whole procedure and to each activity block. Fur-
thermore it is possible to define organisational constraints on the assignment of employees to
activity blocks (like each activity has to be taken care of by only one person, or an activity
block has to be supervised by the same person who supervised the preceding activity). Each
activity block should also be assigned an estimated processing time. Gathering the informa-
tion that is needed within an activity is crucial for capturing the essence of an activity. It is
structured by offering three categories of information sources: information system, people,
and paper based documents.

ol

[

NINOp Wrep

rapel

renumeIsqng fipadoad
Jo pajly
uuo 4

Faly
fipadoad
10U
uuo 4

A2y euuioy

Buissanoug eu_.._._.n._u
paaLue jsankay uoesuaduo’y
uuo § Bupunuoou) 04

voreddy

Juawrredap Jo peay
Aafieuew
uala Buissasoad wie

Bussasoad wnep

sapa Buissaosoad wireja
SANANAY Bnfe s agisuodsal

1§348]2 10 JBGWNU Kew
1§44812 40 JBHWnu U
painhal Ajaewxoldde

A palalifin

nesuadwo) Jo) wrep

X

pajjaoues jou Adljod
pajaauwea Adog
ajy Ajadoad you uuog

A T T
auy] 'uoporjses
J3WNS09 0y ANg
—uoa oy Aapoe
LERR-R=IR=T-1]s!
1o Buissanolg

]

sadnpoid

dauBlsaq ainpadlodd a3lj0

[1asn] wie|o 10algo op m_g._umGEDng 1nd
lasn] wrei2 yaalo o} sjmisnerd Lnd
uosladpainsul 1aalgo woy afe |30

1a8lgo wou swredsnolkaid 318¥d9LI0

-]

SUAWLO0D

Buissanold W'D Buissasold wie|n
_H L adnpadodd @L
Rl gl
I paydead ag [MO WIVID _ Wpa _ _ mEﬁ_ |agepiau]

[nignop s1 Aojodasueansu) Ag afedaao
HO 2[QIPAID 10U S| UDSIAPANSU|

4o ajqsmerd you si1odas afewneg

4l payzead ag i IN4L8n04a WIY1D

wre|D ja8lgo woy sjigowony 135

— uosiadpalnsy|

O —

pajjaoues jou Adljod
pajjaaues Adjod
paiy Auadoad 10u uuoy

= et 12algo wod uosiadpainsy) ._.m_0> quawnaop asnpadoad oy aysed O wuag -y Buissannd pareugsa >:m._:ﬂwnwh_w_ﬂ“w
5 = 2 . n papoalad wep
nsuajdeseyenads aunpasoig =
sa/ quamnaop uosdadpadnsuj daded () uoissayoad P Q salelg
d o aysed Areuonmgabeunsg swirepsnoiaaad fEaH @
mSamuE. | Lik] aidoad O : " abe = }_._mn_o._n_
suondaxa wrep @
eal s5aa0e Aaodasueansulie) s@| mmw._uum.w [ENUEISGNS 10 UONEILLIA Ry wio4
2 S| [EwEp .cozmn_o_) ¥ I e — - = — Adod Jo uorpedyuas juawnaoq m
SUAWLO0D sa2Alag/saINgUNY spalgo BAUNDS unaE(eg uonembay | 5)
’) N ’ : aa0ud 1sanbay Buiuwwoou)
LIOIFEHLIONI] | < H28y) reuuod
efial JaBeuew anuensul Jea sapa Buissasapaad ypm peanuapi O =
.c_ BAANIY | S0
| adueinsur ie) u _ we | uogean i D
g - a2 Buissasoud wiejo 1speN |epuelsqang
wur reuogezivelio uosog 121BY |elLBISONS JO LIONBDILIDA JO UORBDILID A
L 313044 (B ANanay (B 8z 4dy = |

User-interface of the Office Procedure Designer

Figure 5

In order to instruct the description of the control flow within an activity block a template is

presented that is generated depending on the document states that may result from the activ-

ity. It encourages a declarative description, which may be more or less formal. To support
system analyst and domain expert in filling the template a report that includes a description of

all the required information is presented in another text view (see fig. 5).

SIMULATION

After having preliminarily completed requirements analysis and design the available descrip-
tions can be used to analyse the effectiveness of the procedure’s organisation. For this pur-
pose a communication diagram can be generated. It shows the different roles participating in
the procedure as well as the media they use to communicate. For further evaluation this dia-
gram has to be interpreted by a domain expert. A more substantial indicator for the need to
reorganize the procedure is a report of detected media frictions (like they occur when paper-
based information has to be transferred to the IS). Other indicators for further evaluation are
the total time the involved employees have to work on the procedure as well as the costs that
can be calculated from the different costs that have been assigned to the different information
sources.

Another question is more interesting but also more complicated to analyse since its scope is
not restricted to the described type of procedure: what is the optimum number of employees
needed to guarantee a satisfactory throughput? Or in other words: how can organisational
slack be reduced to an optimum? For this kind of analysis the conceptual level is not suffi-
cient. Instead it is the case for simulation. The current version of the Office Procedure
Designer provides only limited simulation capabilities. Bottlenecks only occur in case more
than one person works on a procedure (assumed that totally automated activities do not take
considerable time). For this case it is possible to assign a number of people to each activity
block that requires user interaction. Simulation then reveals bottlenecks and total throughput-
numbers for different constellations. This however will only be sufficient in rare cases.
Employees occupied within one procedure may also have to fulfil other tasks. It has also to
be taken into account that employees have vacation days, that they may become sick (may be
depending on the work load they face), that effectiveness of human work depends on a vari-
ety of aspects. Furthermore quality of work cannot be neglected, its relation to other variables
however is hard to find out. Last but not least it does not make much sense to optimise the
organisation of a single type of office procedure. Since procedures may be interrelated you
need to widen the scope (Porter’s value chain concept is one approach to get an enterprise
wide view). Optimising the organisation of work has been a dream for long. We do not think
that enterprise modelling along with simulating organisational alternatives will make this
dream come true. It can help however to reduce complexity by providing an illustrative rep-
resentation of important aspects and by detecting certain types of organisational misconcep-
tion.

CONCLUDING REMARKS

Our experience with modelling an office domain within an insurance company indicates that
the proposed representations offer illustrative abstractions of an enterprise. This is specially
the case for the representation of office procedures. The graphical notation was intuitively
understood by both system analysts and domain experts. Thereby it is a valuable medium for
starting knowledge acquisition or object modelling respectively. Users seem to prefer proce-
dures as guidance in conceptualising the domain they work in. Therefore asking for a detailed
description of office procedures does not only serve the purpose of adding dynamic or tempo-
ral semantics to the model it also provides a heuristics to shape the static object model.

There is still a lot of research to be done. In order to refine the domain model we have built so
far it is necessary to apply the approach to other domains, preferable car insurance depart-
ments within other insurance companies. Our work has been primarily concentrated on object
models and office procedures. Other levels of abstraction proposed in the conceptual frame-

work (within the organisational and the strategic view) recommend a less formal representa-
tion. Knowledge that is described in textbook-style could be added using the already availa-
ble hypertext features. Although office procedures are an illustrative metaphor it is not suffi-
cient to describe all kinds of work in the office. Certain tasks (like analysing the records of
customers) can be regarded as short procedures (consisting only of one activity block). IlI-
structured cooperative work however requires other concepts as well as another graphical
representation. It would be interesting to complement the Office Procedure Designer by a
tool that allows for illustratively modelling CSCW-applications (for an example on the
instance level see Ellis [1987]).

References

Booch, G.[1990], Object-oriented design with applications. Benjamin/Cummings, Redwood
City

Brodie, M.L. [1984], “On the Development of Data Models.”, in: On Conceptual Modelling.
Perspectives from Artificial Intelligence, Databases and Programming. Ed. by Brodie, M.L.;
Mylopoulos, J.; Schmidt, J., Springer, Berlin, Heidelberg etc., pp. 19-47

Checkland, P. [1981], Systems Thinking, Systems Practice. Wiley&Sons, Chichester
Coad, P. and Yourdon, E. [1990], Object-oriented analysis. Prentice Hall, Englewood-Cliffs
Coad, P. and Yourdon, E [1991], Object-Oriented Design. Prentice Hall, Englewood-Cliffs

Ellis, C.A. [1987], “NICK: Intelligent Computer Supported Cooperative Work™, in: Proceed-
ings of the IFIP WG 8.4 Workshop on Office Knowledge: Representation, Management and
Utilization. Ed. by Lochovsky, F., Toronto, pp. 95-102

ESPRIT Consortium AMICE [1991], CIM-OSA AD 1.0 Architecture Description. Brussels

Frank, U. [1992], “Designing Procedures within an Object-Oriented Enterprise Model”, in:
Dynamic Modelling of Information Systems. Ed. by Sol, H.G.; Van Hee, K.M., North-Holland,
Amsterdam, New York (to appear soon)

Frank, U. and Klein, S. [1992], Unternehmensmodelle als Basis und Bestandteil integrierter
betrieblicher Informationssysteme. GMD research paper, No. 629, Sankt Augustin

IBM [1990], IBM Enterprise Business Process Reference Model.

Keen, P.G.W.: [1981], “Information Systems and Organizational Change”, Communications
of the ACM, Vol. 24, No. 1, pp. 328-337

Lederer, A.L. and Mendelow, A.L., “Information Resource Planning: Overcomming
Difficulties in Identifying Top Management’s Objectives”, MIS Quarterly, No. 11, Vol. 3,
Sept., pp. 388-399

Levesque, H.J. and Mylopoulos, J. [1984], “An Overview of Knowledge Representation”, in:
On Conceptual Modelling. Perspectives from Artificial Intelligence, Databases and
Programming. Ed. by Brodie, M.L.; Mylopoulos, J.; Schmidt, J., Springer, Berlin, Heidelberg
etc., pp. 3-17

Lochovsky, F.H et al. [1988], “OTM: Specifying office tasks”, in: Conference on Office
Information Systems. Ed by Allen, R.B., Palo Alto, pp. 46-54

Luhmann, N. [1984], Soziale Systeme. Grundrif3 einer allgemeinen Theorie. Suhrkamp,
Frankfurt/M.

Macro, A. and Buxton, J. [1987], The Craft of Software Engineering. Addison-Wesley,
Reading, Mass.

Meyer, B. [1990], “Lessons from the Design of the Eiffel Libraries”, Communications of the
ACM, Vol. 33, No. 9, pp. 68-89

Mumford E. [1983], Designing Participatively. Manchester Business School, Manchester
Porter, M.E. [1985], Competitive Advantage. MacMillan, London, New York

Profrock, A.-K. et al. [1989], “ITHACA: An Integrated Toolkit for Highly Advanced
Computer Applications”, in: Object Oriented Development. Ed. by Tsichritzis, D., Genf, pp.
321-344

Rumbaugh et.al. [1991], Object-oriented modelling and design. Prentice Hall, Englewood-
Cliffs

Savage, C.M. [1990], Fifth generation management - integrating enterprises through human
networking. Digital Press

Schank, R.C., The Cognitive Computer. On Language, Learning and Artificial Intelligence.
Addison-Wesley, Reading/Mass.

Weick, K.E. [1979], The Social Psychology of Organizations. Addison-Wesley, Reading,
Mass.

Zachman, J.A. [1987], “A framework for information systems architecture”, IBM Systems
Journal, Vol. 26, No. 3, pp. 277-293

References

Booch, G.[1990], Object-oriented design with applications. Benjamin/Cummings, Redwood
City

Brodie, M.L. [1984], “On the Development of Data Models.”, in: On Conceptual Modelling.
Perspectives from Artificial Intelligence, Databases and Programming. Ed. by Brodie, M.L.;
Mylopoulos, J.; Schmidt, J., Springer, Berlin, Heidelberg etc., pp. 19-47

Checkland, P. [1981], Systems Thinking, Systems Practice. Wiley&Sons, Chichester
Coad, P. and Yourdon, E. [1990], Object-oriented analysis. Prentice Hall, Englewood-Cliffs
Coad, P. and Yourdon, E. [1991], Object-Oriented Design. Prentice Hall, Englewood-Cliffs

Ellis, C.A. [1987], “NICK: Intelligent Computer Supported Cooperative Work”, in: Proceed-
ings of the IFIP WG 8.4 Workshop on Olffice Knowledge: Representation, Management and
Utilization. Ed. by Lochovsky, F., Toronto, pp. 95-102

ESPRIT Consortium AMICE [1991], CIM-OSA AD 1.0 Architecture Description. Brussels

Frank, U. [1992], “Designing Procedures within an Object-Oriented Enterprise Model”, in:
Dynamic Modelling of Information Systems. Ed. by Sol, H.G.; Van Hee, K.M., North-Holland,
Amsterdam, New York (to appear soon)

Frank, U. and Klein, S. [1992], Unternehmensmodelle als Basis und Bestandteil integrierter
betrieblicher Informationssysteme. GMD research paper, No. 629, Sankt Augustin

IBM [1990], IBM Enterprise Business Process Reference Model.

Keen, P.G.W.: [1981], “Information Systems and Organizational Change”, Communications
of the ACM, Vol. 24, No. 1, pp. 328-337

Lederer, A.L. and Mendelow, A.L., “Information Resource Planning: Overcomming
Difficulties in Identifying Top Management’s Objectives”, MIS Quarterly, No. 11, Vol. 3,
Sept., pp. 388-399

Levesque, H.J. and Mylopoulos, J. [1984], “An Overview of Knowledge Representation”, in:
On Conceptual Modelling. Perspectives from Artificial Intelligence, Databases and
Programming. Ed. by Brodie, M.L.; Mylopoulos, J.; Schmidt, J., Springer, Berlin, Heidelberg
etc., pp. 3-17

Lochovsky, F.H et al. [1988], “OTM: Specifying office tasks”, in: Conference on Office
Information Systems. Ed by Allen, R.B., Palo Alto, pp. 46-54

Luhmann, N. [1984], Soziale Systeme. Grundrif3 einer allgemeinen Theorie. Suhrkamp,
Frankfurt/M.

Macro, A. and Buxton, J. [1987], The Craft of Software Engineering. Addison-Wesley,
Reading, Mass.

Meyer, B. [1990], “Lessons from the Design of the Eiffel Libraries”, Communications of the

ACM, Vol. 33, No. 9, pp. 68-89
Mumford E. [1983], Designing Participatively. Manchester Business School, Manchester
Porter, M.E. [1985], Competitive Advantage. MacMillan, London, New York

Profrock, A.-K. et al. [1989], “ITHACA: An Integrated Toolkit for Highly Advanced
Computer Applications”, in: Object Oriented Development. Ed. by Tsichritzis, D., Genf, pp.
321-344

Rumbaugh et.al. [1991], Object-oriented modelling and design. Prentice Hall, Englewood-
Cliffs

Savage, C.M. [1990], Fifth generation management - integrating enterprises through human
networking. Digital Press

Schank, R.C., The Cognitive Computer. On Language, Learning and Artificial Intelligence.
Addison-Wesley, Reading/Mass.

Weick, K.E. [1979], The Social Psychology of Organizations. Addison-Wesley, Reading,
Mass.

Zachman, J.A. [1987], “A framework for information systems architecture”, IBM Systems
Journal, Vol. 26, No. 3, pp. 277-293

