
Abstract
In recent years, Knowledge Management Systems
(KMS) have drawn remarkable attention. However,
there is no common understanding of how a knowl-
edge management system should look like or where
the corresponding research should be directed at.
Based on a number of essential requirements, a KMS
should satisfy, this paper introduces a generic archi-
tecture for KMS. It consists of a conceptual frame-
work that suggests to structure knowledge according
to three perspectives and five aspects. To support the
differentiation of common, generic knowledge,
domain specific knowledge, and information, the
architecture features three levels of abstraction,
namely an ontology level layer, a domain level layer
and an operational level layer. Unfortunately, the
conceptual representation and implementation of
these layers faces a number of challenges. The paper
presents and discusses three alternative design pat-
terns to overcome these challenges.

1. Introduction
With the growing popularity of knowledge

management, it does not come as a surprise that
an increasing number of software vendors claim
their systems would qualify as Knowledge Man-
agement Systems (KMS). Searching the web for
the term ’Knowledge Management System’
retrieves more than 10.000 pages. However,
apparently there is no unified interpretation of
the term. Instead, most of the software featured
under this label turns out to belong to traditional
types of systems, such as text retrieval systems,
document management systems, systems for cus-
tomer relationship management, database man-
agement systems, help desk systems, teachware
or hypermedia systems. It seems that many ven-
dors regard knowledge management as a market-
ing tool that emphasizes certain aspects of sys-
tem deployment rather than as a specific technol-
ogy. Research on knowledge management sys-
tems is characterized by a remarkable diversity,
too. While everybody seems to agree that knowl-
edge management systems are safeguards to

retain mission critical knowledge and that they
are essential to avoid the erosion of organiza-
tional knowledge, there is no common under-
standing of how a knowledge management sys-
tem should look like or where the corresponding
research should be directed. Work on knowledge
management systems takes place in various dis-
ciplines. Often it originates in systems that had
been developed earlier under other labels. In
Artificial Intelligence, knowledge based systems
or tools to develop and maintain ontologies are
related to knowledge management ([1], [2]). In
Information Systems Research, knowledge man-
agement serves as a vehicle to re-invigorate deci-
sion support systems [3]. Data Warehouses as
knowledge repositories are subject of research
on information systems, data base systems and
knowledge based systems ([4], [5], [6]). The
term ’Organizational Memory System’ is used in
various disciplines. However, usually the
descriptions of organizational memory systems
remain on a vague level or are essentially charac-
terized as hypertext or hypermedia systems (for
instance: [7]).

Against this background the question ’what
is a knowledge management system anyway?’
might be regarded as redundant: apparently there
are different interpretations of the term in various
scientific communities and therefore it is hardly
possible to resolve its ambiguity - similar to the
term ’information system’ - by introducing a
unified concept. However, most of the existing
systems that are related to knowledge manage-
ment have been originally designed with other
objectives than knowledge management. The
approach we suggest here is different in the sense
that it starts with a reflection on the notion of
knowledge - and on generic requirements a sys-
tem that is to manage knowledge should fulfil.
To satisfy these requirements, we will outline a
generic architecture of knowledge management
systems that supports the acquisition, representa-
tion, maintenance and dissemination of knowl-
edge on various levels of abstraction.

Knowledge Management Systems: Essential
Requirements and Generic Design Patterns

Ulrich Frank
Institute for Information Systems Research

University of Koblenz
Koblenz, Germany

Published in: Smari, W.W.; Melab, N.; Yetongnon, K. (Eds.): Proceedings of the International Symposium
on Information Systems and Engineering, ISE'2001, Las Vegas: CSREA Press 2001, pp. 114-121

In order to implement this architecture, one
can fall back on a large range of proven concepts
from software engineering in general and from
conceptual modelling in particular. However, at
the same time, knowledge management demon-
strates a series of additional, distinctive require-
ments that bring with them attractive research
problems. The paper will introduce and compare
three design patterns that are suited to meet these
challenges.

2. Knowledge Management Sys-
tems: Requirements and Features
Any attempt to define the term knowledge

has to face a dilemma. On the one hand, knowl-
edge - both as part of colloquial and scientific
language - seems to be a self-evident term with
no need for further explanation. Nevertheless,
you can find many deviating definitions of
knowledge. That makes it almost impossible to
find a definition that is compatible with most
existing notions of knowledge. On the other
hand, knowledge represents a phenomenon that
is very difficult to reflect upon. While we can
speak about knowledge, any insight into knowl-
edge can be regarded as knowledge itself. Simi-
lar to language we can differentiate between
knowledge and knowledge about knowledge
(meta knowledge). But although we can do that
over many levels, in the end we cannot avoid a
regressum ad infinitum. For these reasons, it
seems to be a frustrating endeavour to develop a
comprehensive definition of knowledge. Fortu-
nately, such a definition is not necessary for our
purpose. We mainly need a pragmatic image of
knowledge that is suited to differentiate KMS
from traditional information systems.

2.1 Knowledge versus Information
With a purely formal approach, as it is com-

mon in computer science, it is not possible to dis-
tinguish knowledge from information. Knowl-
edge is not a central term of semiotics either.
However, semiotics offers concepts that help
with a distinction between data and information.
Taking into account the differentiation between
syntax, semantics and pragmatics [8], data can
be regarded as symbols that adhere to a specific
syntax. Syntax and formal semantics (like the
operational semantics defined for an Integer in a
programming language) are defined with a corre-
sponding type or schema. Information on the

other hand depends on the relationship between
data, human perception and action. If data repre-
sent objects in the world view of a person that
are suited to influence his judgement and action,
we can regard it as information. Information con-
tent grows with the number of possible interpre-
tations it excludes. In philosophy, knowledge is
essentially related to cognition, intellectual dis-
covery, explanation and understanding. There-
fore there is emphasis on methods to structure,
give reasons for and evaluate scientific knowl-
edge. In other words, the philosophical notion of
knowledge stresses originality, abstraction and
reason. How does this relate to information?
Whether or not information qualifies as knowl-
edge depends on its originality, abstraction and
reason - aspects whose judgment clearly vary
with the human interpreter. However, abstraction
can be specified more precisely than the other
aspects. Abstraction implies not to refer to single
objects but to types, classes or concepts.

Our brief excursion to semiotics and philoso-
phy - although it would deserve a much more
thorough analysis - gives us some hints how to
characterize knowledge in the context of this
paper. First, knowledge does not denote single
objects but always classes or concepts. Second,
knowledge should be convincing, i.e. it should
be accompanied by proper explanations. Third,
knowledge should be suited to help the stake-
holders of a business firm with understanding,
analyzing and eventually changing its strategy,
organization, and core business processes.

2.2 Requirements
In general, a KMS should serve everybody

who is involved in processes of understanding,
evaluating and (re-) organizing the business. Due
to the nature of these tasks, the primary focus
groups include consultants (internal and exter-
nal), new employees who have to understand the
company in general and their task in particular,
executives, system analysts as well as customers
and suppliers that participate in cross-organiza-
tional business processes. A KMS should pro-
vide these groups with relevant knowledge. With
respect to the notion of knowledge introduced
before we can now describe more specific
requirements, a KMS should fulfill.
Emphasis on Concepts and Reason
A KMS should offer definitions of concepts
that are needed for the description and analy-
sis of a corporation. To give a few examples

for such concepts: corporate strategy, organ-
izational unit, business process, task, em-
ployee etc. Note that these concepts are usu-
ally not defined independently from one an-
other. In contrast to a traditional information
system, a KMS should allow to answer ques-
tions that refer to concepts, for instance:

• What is a business process?
• What are the concepts to describe a new

type of business process?
• What are the organizational implications

of a strategy that is aimed at cost leader-
ship?

Re-use of Existing Knowledge
Although there is no unified terminology for

the description of corporate knowledge, there are
a number of elaborated and well documented
concepts available - provided, for instance, by
text books. This is also the case for the documen-
tation of relevant causal relationships. A knowl-
edge management system should provide an ade-
quate body of existing knowledge. This is for
various reasons. The re-use of knowledge does
not only contribute to the economics of a KMS.
It should also improve the overall quality of its
content. In addition to that it fosters communica-
tion by referring to a body of knowledge many
people are familiar with.

Support of Multiple Perspectives
In order to support different users and differ-

ent tasks, a KMS should provide various per-
spectives on the knowledge it stores. Managing
complexity recommends offering different levels
of detail. For instance, sometimes it will be suffi-
cient to get a description of a business process
that is restricted to an outline of the temporal
relationships between high level tasks. In other
cases it may be important to provide a compre-
hensive description of every task within the pro-
cess as well as of the required resources. The
plethora of intellectual tasks to be performed in
an organization is usually accompanied by a sep-
aration of concerns. Classes of problems are
related to certain professional communities. In
order to support these communities, a KMS
should provide concepts that relate to corre-
sponding specialized languages and abstractions.
Integration with Information

With a KMS there is emphasis on storing

knowledge rather than information. However,
information cannot be completely neglected.
This is for two reasons. Firstly, the distinction
between knowledge and information depends in
part on subjective judgement (see 2.1). For this
reason the complete exclusion of information is
not possible. Secondly: While it is obvious that
knowledge adds value to related information, it
is also the case that information adds value to
knowledge. Since knowledge is rather abstract,
having access to corresponding instances (that
would be regarded as information in the light of
the terminological discussion above) will help
many people to develop a proper understanding.
Therefore a KMS should support the integration
of knowledge with information.
Support of Awareness

In order to foster organizational learning, a
KMS should support the dissemination of
knowledge. Whenever its content gets updated,
users that are interested in the corresponding top-
ics should be notified. For this purpose a user
should be able to subscribe to certain types of
knowledge or - more general - of content.

3. A Generic Architecture for KMS
At first sight, it may seem that the require-

ments presented above could be fulfilled by a
hypermedia system. However, the requirements
have some implications that demand a more spe-
cific architecture. Firstly, a KMS should allow
for storing formalized knowledge. Formalization
improves a system’s integrity (see 2.1). It also
fosters the integration of knowledge with infor-
mation, because a precise, formal specification
of knowledge allows to define semantic relation-
ships to information (for instance through instan-
tiation associations). Furthermore, it provides for
the implementation of powerful notification
mechanisms: a user can subscribe to precisely
defined classes of knowledge. Secondly, as a
consequence of storing formalized knowledge, a
KMS has to feature a formal language that
allows for describing relevant knowledge in an
appropriate way. In order to guide the user with
representing knowledge - and with searching for
it, there is need for structure. For this purpose we
suggest a general framework to structure knowl-
edge in an enterprise using well known abstrac-
tions. It is inspired by a method for multi-per-
spective enterprise modelling (MEMO, [9]).
MEMO differentiates three so called perspec-

tives - strategy, organization and information
system - each of which is structured by four
aspects: structure, process, resources, goals.
From a user’s point of view, the framework pre-
sented in fig. 1 can be regarded as the "main
menu" of the system that offers different foci to
"zoom" into. The various foci (a focus is a partic-
ular aspect within a certain perspective) within
this framework are illustrated by a few character-
istic terms. In addition to this framework, the
requirements suggest to differentiate between
generic knowledge (that is valid for a wide range
of companies), domain specific knowledge (that
is valid for a smaller set of companies) and infor-
mation that is used on an operational level. The
three level architecture depicted in fig. 1 reflects
these thoughts. The top layer serves to store and
manage concepts of specialized languages. We
call it the ontology level layer. The second layer,
which we call the domain level layer, stores
descriptions of knowledge that result from
applying the concepts defined in the top level
layer. Finally, the operational level layer stores
information that is related to domain level
descriptions.

An architecture that implements these three
layers would perfectly fulfill the requirements.
On each layer the basic framework would be
used to structure knowledge or information
respectively.

The architecture promotes the re-use of
generic knowledge in terms of specialized termi-
nologies, which correspond to typical text book
knowledge. Also, it allows to re-use domain spe-
cific knowledge, for instance reference models
of business processes or corporate strategies for

particular types of business firms. Users can sub-
scribe to content they are interested in by refer-
ring to changes of concepts - either on the ontol-
ogy level layer or the domain level layer.

4. Specific Design Patterns
So far, the proposed architecture remains on

a rather abstract level. Its implementation
requires a more concrete specification, which
faces a number of severe problems. As will be
shown, the levels of abstraction offered by com-
mon object-oriented programming languages are
not sufficient to directly reproduce the layers of
the architecture in fig. 1. Another, more subtle
problem results from the specific shortcomings
of instantiation relationships. The generic design
patterns presented in the following sections show
different approaches to deal with these problems.
Notice that we do not apply a comprehensive
structure (like the one suggested by [10]) to doc-
ument a design pattern. Instead, our focus is
mainly on the concepts and their implementation
(corresponding to "structure", "consequences"
and "implementation" in [10]).

4.1 Design #1: Emphasis on Instantia-
tion

To define the representation of the ontology
level layer, we fell back to the specification of a
set of modelling languages we designed previ-
ously as part of MEMO. It includes graphical
languages, like an organisation modelling lan-
guage, a strategy modelling language or an
object-oriented information modelling language

Fig. 1: Basic Framework and Levels of Abstraction

Operational Level Layer

Domain Level Layer

Ontology Level Layer

Knowledge

Information

Strategic
Business Unit

Generic Strategy
Value Chain

Competitive
Advantage

Margin

Competitor
Customer
Supplier
Politics

Human
Resource

Capital Assets

Organisation
Structure

Business
Process

Task

Operational
Goal

Customer
Supplier

Employee
Equipment
Machinery

IS Architecture
Object Model

Transaction
Workflow

Requirement
Metrics

Interfaces
Standards

Platform
Application

Tool

ASPECTS

PE
R

SP
EC

TI
VE

S

Strategy

Organisa-
tion

Information
System

StructureResource Process Goal Environment

[9]. The languages are specified with metamod-
els. Meta models can easily be reproduced by
object models.

The following approach to design a multi
level KMS as it is outlined in 3 corresponds to a
design known from CASE tools. The static
aspects of the ontology level layer are designed
by an object model that represents a meta model,
which defines a particular modelling language.
Hence, implementation of this layer would result
from implementing each class in the object
model through a corresponding class in the
implementation level language. The concepts
used on the domain level layer are then instances
of corresponding concepts on the ontology level
layer. For example: The specification of a partic-
ular process type, such as "Order Management",
would be an instance of the class ComplexPro-
cessType. It would be linked to instances of
other classes that are associated with Complex-
ProcessType. It would be straightforward to
define a particular process as an instance of a
corresponding object on the domain level layer.
However, this is not possible with common
object-oriented programming languages. Usu-
ally, those languages offer two levels of abstrac-
tion: classes and objects (instances). Apparently
these two levels are not enough for our purpose,
since we would need to create an instance from

an instance. To overcome this difficulty, the arte-
facts needed on the operational level layer can be
generated from the object on the domain level
layer - similar to the generation of code from an
object model.

While this design satisfies in part the require-
ments discussed above, it has a number of disad-
vantages:

Conceptual redundancy: Generating con-
cepts on the operational level layer from con-
cepts on the domain level layer results in redun-
dancy. For instance: A particular process type
that is represented by an object on the domain
level layer would be transformed into a class on
the operational level layer. Only then, an
instance of this generated class would be used to
represent a particular instance of the process
type. Assuming that generation does not imply
the loss of semantics, this would mean that there
are two representations with the same meaning.

Limited integration: Generating artefacts
implies to loose their integration with the source.
For instance, changing the generated artefacts
could happen independently of the source
thereby compromising the system’s integrity.

Limited re-use: It is the basic idea of the
ontology level layer to provide the user with a
professional terminology that incorporates all the
knowledge that is relevant within a certain per-

Task_Type

Organizational_Unit_Type

Resource_Type

A ComplexProcessType is aggrega-
ted from zero to many other process
types.

A process type may use zero to
many resource types.

’Product Design’

Process 1

Process 2

Process 3

...

Order Management aims at ...

There is exactly one employee assi-
gned to a particular instance. ...

An exception has to to be raised
when the process takes longer than
maxDuration time.

...

This process started at 5/13/99 -
8:54.

Its current state is ...

The employee James Brown is as-
signed to it.

The order was given by the
customer ITR inc.

....

Meta Model

Process Model
(Definition of Process

Type)

Illustration of
Selected Instance

Selected Subjects Examples for Descriptions presented to the User

’Order Management’’K
n

o
w

le
d

g
e’

 L
ev

el

’d
ril

l d
ow

n’

’e
xp

la
in

’

O
nt

ol
oy

 L
ev

el
 L

ay
er

(F
oc

us
 o

n
R

eu
se

)
D

om
ai

n
Le

ve
l L

ay
er

’O
p

er
at

io
n

al
’ L

ev
el

Fig. 2: Levels of Abstraction within Design Pattern #1

ComplexProcessType

in
st

an
ce

 o
f

spective on enterprises. However, due to the
abstraction on the ontology level layer, the
knowledge that is expressed here relates to con-
cepts (or types) only - although there might be
generic knowledge that applies to all instances of
a type, too. But within this design there is no way
to express features of instances. For example, it
is well known that each process has a start time
and may be an end time. These would be typical
attributes of a class that represents a process
type. But here, the attributes of a class on the
ontology level layer define features of process
types - and a process type does not have a start
time or and end time.

4.2 Design #2: Emphasis on Inheritance
This alternative is a response to disadvan-

tages encountered with design pattern #1 - espe-
cially the limited re-usability of generic knowl-
edge. To overcome these problems, design pat-
tern #2 features inheritance relationships
between the ontology level layer and the domain
level layer rather than instantiation relationships.
This decision has a clear impact on the content of
the ontology level layer: It will not contain the
terms of a language anymore, instead it will pro-
vide generic concepts, which can be specialized
into domain specific concepts. At first sight, the
resulting design seems almost the same as the
one in fig. 2. However, from a logical point of
view, featuring inheritance relationships between
the ontology level layer and the domain level
layer implies a fundamental difference to the use
of instantiation relationships. Nevertheless, the
distinction between both types of relationships is
not intuitive because of their ambiguous use in

natural language: we use the same denominator -
"is a" - for both relationships. For instance:
"Order management is a process" where "a pro-
cess may contain other processes" or: "Order
management for hazardous goods is an order
management process." In both cases "is a" can
either mean that a process (type) is being special-
ized from an existing one or that a process (type)
is one possible specification out of many types
that are instances of a meta process type. In the
case of an instantiation relationship, the concepts
on the ontology level layer are used to define
process types. Hence, they describe features of
types only. This is different with inheritance rela-
tionships. In this case, the ontology level layer
would contain generic concepts, like a generic
business process type, which could be special-
ized into domain specific process types. Hence, a
generic type could include all the features every
instance of any possible specialized type should
have. Despite this advantage, this pattern implies
some severe disadvantages, too:

Lack of Flexibility: The domain level is
restricted to types that are specialized from those
on the ontology level layer. If there is need for
additional types - in other words: for additional
terms on the domain level layer, a modification
of the ontology level layer will be the only
option. Changing the ontology level layer, how-
ever, compromises the chances to re-use the con-
tent of the domain level layer in other environ-
ments. Additionally, different from design pat-
tern #2, it is not possible to express features that
relate to the set of instances that belong to a type.
For example, one could not express a feature like
‘averageDuration’ of all processes of a certain
type.

Process Model
(Definition of Generic

Process Type)

Task

Organizational_Unit

Resource

A Generic_Process is aggregated
from zero to many other processes.

A process may use zero to many
resources.

One or more organizational units are
in charge of a particular process
instance.

’Product Design’

Order Management aims at ...

There is exactly one employee assi-
gned to a particular instance. ...

An exception has to to be raised
when the process takes longer than
maxDuration time.

...

Process Model
(Definition of Process

Type)

Selected Subjects Examples for Descriptions presented to the User

’Order Management’’K
n

o
w

le
d

g
e’

 L
ev

el

O
nt

ol
oy

 L
ev

el
 L

ay
er

(F
oc

us
 o

n
R

eu
se

)
D

om
ai

n
Le

ve
l L

ay
er

Generic_Process

sp
ec

ia
liz

ed

fr
om

Fig. 3: Design Pattern #2: Emphasis on Specialization

Lack of satisfactory Specialization Seman-
tics: The specification of domain level concepts
depends on the chances to find proper specializa-
tion from generic concepts on the ontology level
layer. Unfortunately, the specialization of con-
cepts faces a number of serious challenges.
Firstly, for complex concepts, like a process
type, it is hard to find a convincing specification
of specialization relationships. For some process
types, it seems to be obvious that they are related
via a specialization relationship. However, for-
malization requires a precise definition of spe-
cialisation. For instance: Is a process type a spe-
cialization of an existing one, if it contains addi-
tional subprocesses? As an orientation, any prop-
osition that is made about a general concept
should hold for the specialized concept, too.
Consider the specialization of generic process
type, e.g. Generic_Process (see fig. 3). If a
specialized type, like Order_Management
required a specialization of Role, for instance a
Department_Manager, it might seem appropri-
ate to specialize Department_Manager from
Role. However, that would result in a problem
that is similar to the notorious covariance prob-
lem known in object-oriented software engineer-
ing [11]: The proposition that every instance of a
Generic_Process (or one of its subtypes
respectively) may be associated with an instance
of Role would not hold anymore for
Order_Management, because an instance of
Order_Management would require a specific
subtype. In other words: such a covariant redefi-

nition of features would result in a logical con-
tradiction.

To summarize, design pattern #2 is an option
only, if the domains that are subject of a KMS
are relatively stable and the designers of a sys-
tem are confident to have a comprehensive
understanding of these domains.

4.3 Design #3: Additional Metaclasses
The two design patterns considered so far

come with disadvantages that can hardly be
accepted in many cases. An ideal solution would
combine the expressive power of instantiation
relationships with that of inheritance relation-
ships. Our investigations in this requirement
indicate that there is no such ideal solution. The
only way we found to specify an alternative that
is superior to the ones described above is to
apply a "conceptual trick". It consists of intro-
ducing an additional level of abstraction, namely
metaclasses. A metaclass serves to describe fea-
tures of a class, which is its only instance. Hence,
it is possible to express that ‘number of
instances’ or ‘average Duration’ are features of a
set of process instances (represented by a class)
which are stored with a class (see fig. 4). The
instance of a metaclass is initialised on the layer
the class belongs to.

The implementation of metaclasses depends
on the concepts provided by the implementation
level languages. Implementation is convenient
with languages like Smalltalk that feature meta-
classes. Otherwise one might define special

Fig. 4: Additional Metaclasses to represent Type Features (Design Pattern #3)

assigned to

name: String

Org_Unitcompetence: Text
comments: Text

Role

Position

defaultAction: Action
costCaused: Money

Exception
0,*

0,1

occuredAt: DateTime

AbstractEvent

in
C

ha
rg

eO
f

criticalSF: Text
generalGuideLines: Text
averageDur: TimePeriod
totalInstances: Integer
totalCurrInstances: Integer
averageProfit: Money
averageDeviation: TimePeriod
lessonsLearnt: Text

<<Meta>>
Agg_Process

profile: Text
numberOfInstances: Integer
numberOfExtInstances: Integer
lessonsLearnt: Text

<<Meta>>
Role

numberOfInstances: Integer
numberOfInstPerProject: Integer
averageCostCaused: Money
lessonsLearnt: Text

<<Meta>>
Exception

Agg_Unit

name: String

Process

Agg_ProcessTask

classes with a sole instance that serves to repre-
sent features of a class. In addition to that one
has to protect the semantic integrity of the rela-
tionship between a virtual metaclass and the cor-
responding class.

5. Conclusions and Future Work
Against the background of essential require-

ments suggested for KMS, we introduced a three
level architecture of KMS. The conceptual speci-
fication and even more so the implementation of
these layers faces a number of subtle problems.
Design pattern #1 is suited only if there is no
need to store knowledge/information about types
(or classes respectively). On the other hand,
design pattern #2 is not suited for dynamic
domains where one has to face frequent changes
of generic knowledge. Design pattern #3 is a
compromise that combines the advantages of the
two other patterns. Unfortunately, the introduc-
tion of metaclasses implies additional difficulties
with those programming languages that do not
feature metaclasses. Our future research on KMS
will take two parallel directions. To evaluate the
usability of the concepts on the ontology and
domain level layer, we deploy corresponding
conceptual models in projects we currently con-
duct with a number of business firms. First
results indicate that an intuitive graphical repre-
sentation is of pivotal importance for gaining
acceptance with users. However, as soon as the
models become subject of detailed analysis, the
benefits of precise (formal) definitions become
evident. The other direction of our future
research aims at investigating alternative ways to
represent knowledge. This includes the use of
knowledge representation languages from Artifi-
cial Intelligence as well as corresponding infer-
ence engines. An additional "meta ontology"
layer would allow for gaining even more flexi-
bility. It would feature a meta language that
could be used to specify additional special pur-
pose languages - or to modify/enhance an exist-
ing language. For this purpose we plan to use an
already existing meta-metamodel [12].

References
[1] Farquhar, A.; Fikes, R.; Rice, J.: The Onto-
lingua Server: A Tool for Collaborative Onto-
logy Construction. In: International Journal of
Human-Computer Studies, 46(6): 707--728,
1995

[2] O’Leary, D. E.: Using AI in Knowledge
Management: Knowledge Bases and Ontologies.
In: IEEE Intelligent Systems, 13(3)34--39, 1998

[3] Holsapple, C. W.; Whinston, A. B.: Deci-
sion Support Systems: A Knowledge-Based
Approach. Course Technologies 1996

[4] Erdmann, M.: The Data Warehouse as a
Means to Support Knowledge Management. In:
(Ed.): Proceedings of the 21st Annual German
Conference on AI ’97: Freiburg, Germany, Sep-
tember 9th - 12th (http://www.dfki.uni-kl.de/
~aabecker/Freiburg/Final/ws-ki-97-procee-
dings.html). 1997

[5] Inmon, W. H.: Building the Data Wareh-
ouse. 2. Ed., Wiley 1996

[6] Gray, P.; Watson, H. J.: Decision Support in
the Data Warehouse. Prentice Hall 1998

[7] Euzenat, J.: Corporate Memory Through
Cooperative Creation of Knowledge Bases and
Hyperdocuments. In: (Ed.): Proceedings 10th
Banff Workshop on Knowledge Acquisition for
Knowledge-Based Systems. SDRG Publications
1996, pp. 1-18

[8] Morris, C. W.: Writings on the General
Theory of Sign. Mouton 1971

[9] Frank, U.: Visual Languages for Enterprise
Modelling. Arbeitsberichte des Instituts für Wirt-
schaftsinformatik. Arbeitsberichte des Institut
für Wirtschaftsinformatik der Universität
Koblenz-Landau, No. 18, 1999

[10] Gamma, E.; Helm, R.; Johnson, R. E.; Vlis-
sides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
1998

[11] Meyer, B.: Object-oriented Software Con-
struction. 2. Ed., Prentice Hall 1997

[12] Frank, U.: The MEMO Meta-Metamodel.
Arbeitsberichte des Institut für Wirtschaftsinfor-
matik der Universität Koblenz-Landau, No. 9,
1998

