
Delegation: An Important Concept for the Appropriate
Design of Object Models

Ulrich Frank
University of Koblenz

Ulrich.frank@uni-koblenz.de

Abstract
In many application domains, there are certain aspects that cannot be modeled in an adequate
way by using generalization - although it may be the concept of choice at first sight.
Sometimes common associations such as interaction or aggregation will fail as well. In those
cases, delegation often proves to allow for an appropriate abstraction. While delegation has
been an important concept in different areas of computer science (mainly within AI and
programming languages) for a long time, it is not explicitly offered by any of the major
object-oriented modeling languages. In this paper, we introduce a concept of delegation as
part of an object-oriented modeling language. First, we will analyze why both inheritance and
common associations sometimes fail to model certain aspects of the real world. Against this
background, it will be shown how delegation allows to fill this conceptual gap. The semantics
of delegation as a modeling concept is specified in a metamodel. In order to foster the
appropriate use of delegation, we provide a few examples together with a number of general
design criteria.

1. Introduction
Within various projects, we had to realize that often neither inheritance nor commonly used
associations (like interaction or aggregation) seemed to be appropriate concepts to model cer-
tain aspects of the real world. Instead, delegation proved to fill this conceptual gap in many
cases. Delegation has been an important concept in different areas of computer science
(mainly within AI and programming languages). In conceptual data modeling, the need for
delegation was emphasized long ago [BaDa77]. In various publications on object-oriented
software development delegation is mentioned as well ([Rum93], [GoRu95], [KaSc96],
[Lie86], [BaDo96], [Sci89], [IBM94], [Wie95]). However, none of the major object-oriented
modeling methods (such as [Boo94], [Jac92], [Rum93]) includes delegation explicitly as a
concept of its own. This is the case for the current version of the UML [OMG99], too. We
presume that this is for a number of reasons: Overestimation of the expressive power of
inheritance, the ambiguity of inheritance, and the fact that most object-oriented programming
languages do not allow for a convenient and safe implementation of delegation. We will first
analyze the conceptual shortcomings of both inheritance and common associations. Then we
will introduce delegation as a concept for object-oriented modeling.

2. Limits of Inheritance
Without any doubt, inheritance is an outstanding feature of object-oriented design. Not only
that generalization and specialization foster maintainability and reusability. Furthermore,
generalization can be regarded as a common sense concept, thereby fostering an intuitive and
natural way to describe the real world. However, in some cases inheritance, although applied
in an intuitive way, can result in inappropriate concepts. Consider the following example: In
order to design an information system for a university, you need objects to represent students,
research assistants, professors, etc. Since they share common features like name, date of

Published in: Journal of Object-Oriented Programming. Vol. 13, No. 3, June 2000, pp. 13-18

birth, sex, etc., you would introduce person as a generalization - resulting in rather natural
concepts: a student is a person, a professor is a person, etc. Then you find out that you need
objects to represent programmers, lecturers, administrators, etc. Again inheritance seems to
be the right choice, because programmers, lecturers, and administrators happen to be persons.

However, students as well as research assistants or professors may also be programmers - or
even programmers and lecturers at the same time. While, for obvious reasons, single inherit-
ance is not an option in this case, multiple inheritance would allow to express those semantic
relationships (see fig. 1).

Person
Teaching

ResearchAssistant

Programming
ResearchAssistant

Programming
Student

Student
Administrator

Student

Professor

Lecturer

Programmer

Administrator

Research
Assistant

TeachingAnd
Programming

ResearchAssistant

Programming
StudentAdministrator

specialized from
Fig. 1: Concepts resulting from Multiple Inheritance

Classes defined in this hierarchy would in principle allow the expression of the combinations
of responsibilities mentioned above. Unfortunately, it results in concepts you would hardly
consider as a natural way of modeling the world - like "teaching and programming research
assistant". However, even more important is the fact that inheritance - no matter whether it is
single or multiple - will lead to misconceptions that jeopardize a system’s maintainability and
integrity. Think of a person that may be regarded as a programmer in one context and as a
student in another context. With most object-oriented programming languages, inheritance is
specified in a way that, in our case, it would result in instantiating objects from different
classes. Hence, the same person would be represented by different objects. In our opinion,
this sort of redundancy is not acceptable.

As this small example illustrates, using inheritance may result in inadequate models, although
every single "is a"-relationship seems to be appropriate. This rather confusing phenomenon is
caused both by the ambiguity of "is a" in natural language and the implementation of inherit-
ance in common object-oriented programming languages. A natural language often does not
explicitly differentiate between a concept and its instances. This is different with
programming languages. In most languages we know, "is a" is related to a set of features a
class shares with its subclasses. An instance, however, usually is of one and only one class. In
other words: Within object-oriented programming languages, an instance of a class is
(usually) not an instance of the respective superclass.

Beside redundancy, lack of flexibility is another shortcoming of inheritance. When we talk
about a domain like the one outlined above, we obviously use abstractions that depend on the
current context we are in. Sometimes we are interested in a person being a lecturer, and we do

not care whether he is able to write a program or not. In another context we may regard the
same person as a system administrator. Inheritance, however, does not allow to express
changing contexts that may apply during the lifetime of objects. In other words:
Generalization requires us to "freeze" certain abstractions before having instantiated a single
object, while we sometimes need concepts that allow us to change abstractions after objects
have been instantiated.

3. Alternatives to Inheritance
It is surprising that the problem we have discussed so far is hard to find in publications on ob-
ject-oriented modeling. Some of the rare examples are [IBM94] and [Rum93].

3.1 Interaction
[IBM94] outlines the example of on object model for an auction. Among the classes the au-
thors identify are Person, Auctioneer, Bidder, and Seller. They explicitly advise against the
use of inheritance: "This is because it is possible for the same person to be a bidder, an
auctioneer, and a seller." ([IBM94], p. 140). Instead they use an "interaction"-association,
indicating that - for example - an instance of the class Bidder uses an instance of the class
Person. Fig. 2 shows how to model our example domain with interaction associations. This
approach helps to avoid redundancy, and adds flexibility to our model as well. However, it
has one severe disadvantage: By treating those special associations like any other interaction
association, we completely neglect the semantics that is characteristic for these associations
in the real world: A bidder is a person. In other words: We would know more about our
domain than we could express in our model - although this knowledge would be relevant for
system implementation.

Interaction

uses

uses

uses

uses

uses
0,11,1

0,11,1

0,11,1

0,11,1

0,11,1

Person

Student

Professor

Lecturer

Programmer

Administrator

Fig. 2: Modeling the Example with Interaction Associations

3.2 Aggregation
Rumbaugh et al. suggest the use of "delegation" which they define as "aggregation of roles"
([Rum93], p. 67). In our example domain, they would regard a person as an aggregation of
his appearances - we could also say: his roles - in various contexts. Firesmith et al. mention
only briefly that aggregation could serve to provide some sort of delegation: "... the parts are
visible to the aggregate and the aggregate can therefore delegate some of its responsibilities
to its parts ..." ([FiHe96], p. 76.

Aggregation does not suffer from the problems we encountered for inheritance. Like in any
other approach, the essential features of a person are specified in the class Person. The partic-

ular properties of a specific person (like his name, sex, etc.) are stored only within an instance
of this class. Other features that may be relevant in certain contexts (like features of a student
or a lecturer) are stored in role objects. Each role object would be regarded as a part of a cor-
responding instance of Person. A particular role object would not need to include any state
that is managed within its associated object of the class Person. Hence, redundancy could be
avoided. However, aggregation, too, is certainly not a satisfactory solution. This is for two
reasons:

• There is a conflict with the common notion of aggregation. The semantics of aggregation
is a delicate subject. None of the well-known methods or languages for object-oriented
design (like [Rum93], [Boo94], [Jac92], [BoRu96]) provides a sound definition.
Nevertheless, aggregation usually implies a notion of containment or even physical
containment. We doubt that it is common sense to regard a role as a contained part of a
person.

• Treating roles like other aggregated parts fails to express the special semantics we usually
associate with roles. While we expect a person that performs a certain role (like a student)
to still act like a person, this is certainly not the default for aggregates: You do not expect
a wheel to act like a car. Therefore, similar to interaction, aggregation would force us to
abstract from relevant semantics.

We can summarize that by no means aggregation provides a natural conceptualization of our
example domain. Instead we find it to be a rather bizarre abstraction. What we are looking for
is a special association that allows to express the semantics we have identified. For instance:

This association should imply that an object of the class Lecturer would behave like an object
of the class Person. In order to avoid the confusion resulting from the ambiguity of "is a" we
suggest to use other designators to characterize this sort of association. Instead of stating "a
programmer is a person", we would rather say "a programmer represents a person" (or "a per-
son acts as a programmer"). A programmer would then be regarded as a role. Different from
inheritance, a particular instance of the class Person would propagate its state and behaviour
to an instance of the (role-) class Programmer.

4. Delegation
There are two different perspectives on delegation, which are not always differentiated: an
implementation or run-time point of view, and a conceptual point of view. On the
implementation level, there is a remarkable amount of work on languages which feature
delegation. In his classification of object-centered programming languages, Wegner calls
languages which allow for inheritance object-based, while languages that support delegation
instead are characterized as "classless objects with delegation" [Weg87]. Classless
programming languages are sometimes called delegation based, while objects within these
languages are called prototypical objects ([Lie86], [UnSm87]). For a detailed analysis of
delegation based languages see [Mal95].

In most cases, delegation seems to be used with a programmer’s perspective in mind: An
object that receives a message which is not included in its own protocol delegates this
message to another object (see, for instance ([GoRu95], p. 507). On a conceptual level,
however, this point of view seems to be misleading: We would hardly say that a programmer
delegates to a person when he is asked his name. Instead, we would rather say that a person
delegates his responsibilities to roles that may represent him in specific contexts. Not only
that implementation and conceptual level are usually not clearly differentiated, furthermore,
there are alternative terms: Sciore uses "object specialisation" [Sci89] in order to express that

a "specialized" object "inherits" behavior from another object it can delegate messages to.
Within the programming language Self, the object a message can be delegated to is called
"parent object" [UnSm87]. Kappel and Schrefl introduce an association that they call
"roleOf" ([KaSc96], pp. 32). Among other things, they characterize a "roleOf"-association by
the notion of "Instanzvererbung" ("instance level inheritance").

0,1

0,1

0,1Person

Student

Professor

Lecturer

marks role within delegation

acts as

acts as

acts as

Fig. 3: Modeling the Example with Delegation

4.1 Semantics
Since our emphasis is definitely on the conceptual level, we prefer to speak of a responsibility
delegated from a "delegator" to a "delegate". However, in order to avoid the ambiguity that
might be caused by the fact that the term delegation is sometimes used in the opposite direc-
tion, we decided to use "role" and "role filler" instead. We define delegation as a special asso-
ciation with the following general characteristics:
1. Delegation is a binary association with one object (the "role" or "role object") that pro-

vides transparent access to the state and behaviour of another (not the same) object (the
"role filler" or "role filler object").

2. The role object dispatches every message it does not understand to its role filler object.
Thereby, it does not only dynamically "inherit" a role filler object’s interface (as it would
be with inheritance, too) but also represents the particular role filler’s properties. In other
words: It allows for transparent access to the role filler’s services and state. In case a role
filler object includes a service that is already included in a role object’s native interface
(defined in its class or one of its superclasses), the role object will not dispatch the mes-
sage to the role filler object. Instead the corresponding method of the role object is exe-
cuted.

3. Inheritance and delegation: Both, the responsibilities of a role filler class and a role class
are by default inherited to their respective subclasses.

4. A role filler may in general have none or many roles. For a particular delegation, the mul-
tiplicity of roles can be specified within this range. A role filler may have more than one
role of the same class. For instance: An object of the class Person may be associated with
more than one instance of the class Programmer at the same time - a programmer with
Smalltalk experience and another one with C++ experience (that does not mean, however,
that we would recommend to always use two instances for modeling this situation).

Different from the less restrictive use of the concept in some delegation based programming
languages, we propose a number of constraints:
#1 Only classes that are kind of a special role class or a special role filler class can be used

to serve as roles or role fillers within a delegation association. This is for two reasons:

Not any object is conceptually suited to serve as a role or a role filler respectively. More-
over, the special semantics of both classes will often require certain extensions on the
implementation level.

#2 The number of role filler classes to be used for a particular role class is restricted to one.
While there are real world situations where it seems to be appropriate to have a role class
associated with more than one role filler classes (see example 2 below), such a "multiple
delegation" would substantially decrease the chances to check a model’s integrity. The
concept of delegation we have decided on does not allow for multiple delegation, since
we regard integrity a more valuable asset than flexibility in this case. That does not
necessarily exclude a role being associated with instances of different role filler classes -
provided they are all subclasses of one common superclass. It may be helpful to define an
abstract superclass for this purpose, thereby providing a minimum common protocol for
all possible role fillers (see example 2 below).

#3 At a point in time, a role object must not be associated with more than one role filler
object. While associating a role object with more than one role filler object of the same
class (#2) would not add confusion with respect to the interface, it would certainly
jeopardize the whole idea of delegation: A role represents exactly one role filler and
allows transparent access to that role filler’s state. Notice that this does not exclude a role
object to change its role filler object over time.

#4 Multi-level delegation is possible. However, cyclic associations are not permitted. Since
the number of a role class’ corresponding role filler classes is restricted to one, it seems
appropriate to allow a role object to also act as a role filler object (which one might call
multi-level delegation). It may increase a model’s complexity but it is no serious threat to
its integrity. For this reason, multi-level delegation is not excluded by our definition of
delegation. By no means may a role object act as a role filler of itself: In most cases, one
would regard an object that is a role of itself as a bizarre abstraction on a conceptual
level. On an implementation level, a cyclic association of this kind would impose the
threat of non-terminating message dispatches.

Delegation is a concept provided by MEMO-OML, an object-oriented modeling language
that is part of a method for enterprise modeling ([Fra97], [Fra98]). In order to bridge the
semantic gap between a modeling language that includes delegation and an object-oriented
programming language, we enhanced Smalltalk with delegation. The implementation of the
delegation framework (fig. 4) is essentially based on overriding the "doesNotUnderstand"
method common to all Smalltalk classes within an abstract class Role. RoleFillerModel and
RoleModel, specialized from RoleFiller and Role, allow for transparent management
(registration, notification) of dependants - similar to the behaviour provided by the Smalltalk
class Model. By adding two alternative classes we leave it up to the user of the framework
whether he wants to use the dependence mechanism or not: In case it is required to notify a
role’s dependants about its role filler’s changes, you would specialize from RoleFillerModel
and RoleModel, otherwise you would use the framework by defining subclasses from
RoleFiller and Role (for details see [FrHa97]). The delegation framework is available on the
web (www.uni-koblenz.de/~iwi/mobis/smalltalk). Notice, however, that with languages,
which do not support dynamic typing, delegation cannot be implemented in such an elegant

and flexible way.

Fig. 4: The Delegation Framework and its Use via
Specialization

Role

Role

To use delegation within a Smalltalk program, you specialize classes from the abstract classes
provided by the framework. The objects instantiated from the specialized Role classes have to
be registered with their corresponding role filler object. Nothing more is required. After that,
each message that a role object does not understand is dispatched transparently to the
associated role filler object. Executing the following code would result in executing the
method firstName of the Person object.

| aPerson aStudent |

aPerson := Person new.
aPerson firstName: 'James'.
aStudent := Student new.
aPerson addRole: aStudent. “Register aStudent as a role of aPerson”
aStudent firstName

4.2 Examples
The following two examples serve to illustrate typical cases for delegation. They are rendered
using the graphical notation suggested by MEMO-OML ([Fra98]). More examples are pre-
sented in [FrHa97].

a) "Class Migration"

An insurance company wants to keep track of future customers by storing information about
its current customers’ children. Once the children turn 18, they are to be offered insurance
services specially designed for young people. If they eventually become customers, there is
need to update the company’s database. In a straightforward approach, one would probably
delete the particular instance of the class Dependant and instantiate a new instance of
InsuredPerson. Afterwards you would have to initialize this instance using the relevant parts
of the former Dependant instance. However, not only that this approach is somewhat
cumbersome, it also jeopardizes system integrity (there may be numerous references pointing
to the Dependant instance). A more ambitious approach would aim at changing an object’s
class - from Dependant to InsuredPerson in our case. Such an approach, usually referred to
as "Class Migration" (see for instance [Wier95]), is rather confusing (what does it mean when
something "changes" the concept it is defined by?). Furthermore, it will usually be a
remarkable effort to provide for a satisfactory implementation. This is different with
delegation. We could regard both an instance of InsuredPerson and an instance of Dependant
as roles of an instance of Person (see fig. 5). In this case, we would simply add a new role by
creating an instance of InsuredPerson. Since the multiplicity for Role is 0,1 in our example,
the instance of Dependant would now have to be deleted. This would, however, not affect
relationships between customers as long as those are modeled as associations between
Person objects.

parent of
0,*

Person

Dependant

InsuredPerson

Role

0,2

acts as

Fig. 5: Avoiding Class Migration through Delegation

b) "Multiple" role filler classes

A retail company serves both individuals and companies. Some of those companies also act
as suppliers. If we first look at the second aspect, it would be a good idea to regard a
customer as a role of a company. Supplier could then be another role a company may play.
However, an individual may be a customer as well. Treating both a company and a person as
role filler of the role customer is not permitted without further consideration: It would not be
compliant with constraint #3. On the other hand, it may turn out that introducing two
different kinds of customers without a common superclass will add redundancy, since there
may be numerous aspects of customers that do not require checking whether they are
individuals or companies. In order to take advantage of the benefits offered by delegation,
there is only one chance left: introducing a common superclass of the role filler classes
Person and Company. This class may be an abstract class, for instance AbstractPerson. It
should offer essential features of both Person and Company - such as name and address. No
matter whether a particular instance of Customer is associated with a Company or a Person
object, it would be able to answer to the protocol defined in AbstractPerson. Note that the
maximum multiplicity of the role filler class, AbstractPerson, prevents a Customer object
being associated with a Company object and a Person object at the same time. However, this
example should illustrate that delegation is not always the best choice. Only if it is acceptable
to introduce a common superclass of role filler class candidates (that means if there is at least
a few common features), delegation is an option.

0,1
Customer

Person

Abstract
Person

Company

Supplier
acts as

0,1

acts as

Fig. 6: 'Multiple' Delegation through Generalization

4.3 Guidelines for the Use of Delegation
While delegation can be a valuable alternative to inheritance, it is definitely not suited to re-
place it in general. In order to support the decision whether or nor to use inheritance, Rum-
baugh et al. suggest focusing on the "essence" of inheritance: "Inheritance should only be
used when the generalization relationship is semantically valid. Inheritance means that each
instance of a subclass truly is an instance of the superclass; thus all operations and attributes
of the superclass must uniformly apply to the subclass." ([Rum93], p. 284) In our opinion,
this criterion is rather confusing - especially because Rumbaugh et al. refer to a different
concept of inheritance than the one they use when they suggest aggregation as a concept to
represent delegation (see 3.2). Applying Rumbaugh et al.’s suggestion to our first example
would result in specifying the class Student as a subclass of the class Person - which is -
taking into account the semantics of inheritance usually provided by programming languages
- exactly what we wanted to avoid. While we do not agree to the rule of thumb Rumbaugh et
al. suggest, we do not agree with Veryard either: "There are no fixed guidelines when to use

subtyping and when to use role entities; it is largely a matter of taste and style." ([Ver92], p.
54). Whether or not to apply delegation should always be based on a thorough analysis of the
specific domain. We suggest a few guidelines that may help with this analysis.

• Do not get confused by the ambiguity of "is a". Ask yourself whether a relationship
between two concepts could also be called "represents" or "acts as" respectively. If this is
the case, you have found a delegation candidate.

• Delegation is closely related to the common sense concept of a role. Notions such as
„task“, „job“, „serves as“, „works as“, etc may indicate the existence of a role. Therefore
you should look for corresponding terms within available descriptions of a domain.

• A generalization that does not necessarily hold for the entire lifetime of the system to be
designed could be a case for delegation. For instance: If a professor does not necessarily
have to be an employee, delegation will be a better choice than inheritance.

• Whenever you encounter the existence of different views on an object, or different con-
texts an object may be assigned to, it is a good idea to check whether these views or con-
texts can be related to roles or responsibilities of the object in a natural way. In this case,
delegation might be a useful option.

• Some real world entities are likely candidates for becoming role filler objects: persons,
organizations, and versatile machines. Assigning the objects of a preliminary object model
to such categories may help with identifying delegation associations.

Multi-level delegation should be used with specific care. While it may provide a more natural
abstraction of certain real world aspects, it can make it more difficult to debug and maintain
code. In general, one should beware of exaggerating the use of delegation.

5. Concluding Remarks
Delegation is an important concept to enrich both conceptual models and languages used on
the implementation level. The advantages it offers are certainly not only of academic rele-
vance. Kathuria/Subramaniam, who suggest a similar concept that they call "assimilation"
(however, not as part of a modeling language), state: "As practitioners we have a strong need
for a concept like assimilation." ([KaSu96], p. 39). While delegation has been subject of nu-
merous publications in the area of object-oriented programming languages ([BaDo96],
[Lie86], [Sci89], [Ste87], [Weg87]), popular object-oriented modeling methods (like
[Boo94], [Jac92], [Rum93]) do not include it as concept of its own. This is also true for re-
cent efforts to suggest "unified" or "open" (and eventually standardized) modeling languages
(like [FiHe96], [OMG99]).

One essential motivation to introduce delegation is to be seen in the shortcomings of inherit-
ance to model certain aspects of the real world. However, the semantics of inheritance is not
specified in a unique way - if it is specified at all. The concept of inheritance we use is
adapted from common object-oriented programming languages such as Smalltalk, Eiffel,
C++, etc. This concept is different from a notion of inheritance that is known as "set-
oriented" or "extensional". It is based on the idea of a class as a set of objects with common
features. This set can be divided into subsets, hence subclasses, each of which is
characterized by additional features. Different from intentional inheritance, each instance of a
class is an instance of its superclasses at the same time (for a comprehensive comparison see
[KaSc96], pp. 15).

Extensional inheritance provides features that are very similar to delegation. It can be

expected that the next generation of mainstream data base systems ([StMo95]) will support
extensional inheritance. At first sight, this perspective may suggest that delegation will
eventually become obsolete. However, it might even promote the future importance of
delegation. Mainstream object-oriented programming languages do not support extensional
inheritance. Moreover, there is a good reason why this will not change in future times: It is an
essential concept of those languages that an object is an instance of exactly one class, not of
many classes, as it would be the case with extensional inheritance. Hence, a mismatch can be
expected between the concepts of inheritance used in programming languages and in some
future database management systems. Delegation could serve to overcome this problem:
Although both concepts do not offer identical semantics, delegation could be an option to
represent extensional inheritance.

References
[BaDa77] Bachman, C.W.; Daya, M.: The role concept in data models. In: Proceedings of

the 3rd International Conference on Very Large Databases 1977, pp. 464-476
[BaDo96] Bardou, D.; Dony, C.: Split Objects: a Disciplined Use of Delegation within

Objects. In: Proceedings of the OOPSLA’96. New York: ACM 1996, pp. 122-137
[Boo94] Booch, G.: Object-Oriented Analysis and Design with Applications. 2nd Ed.,

Redwood City: Benjamin Cummings 1994
[FiHe96] Firesmith, D.; Henderson-Sellers, B.; Graham, I.; Page-Jones, M.: OPEN

Modeling Language (OML) - Reference Manual. Version 1.0, 1996 (http://
www.csse.swin.edu.au/cotar/OPEN/OPEN.html)

[Fra94] Frank, U.: MEMO: A Tool Supported Methodology for Analyzing and (Re-)
Designing Business Information Systems. In: Ege, R.; Singh, M.; Meyer, B.
(Eds.): Technology of Object-Oriented Languages and Systems. Englewood
Cliffs/NJ: Prentice Hall 1994, pp. 367-380

[Fra97] Frank, U.: Enriching Object-Oriented Methods with Domain Specific Knowledge:
Outline of a Method for Enterprise Modelling. Arbeitsberichte des Instituts für
Wirtschaftsinformatik. No. 4, Koblenz 1997

[Fra98] Frank, U.: The MEMO Object Modelling Language (MEMO-OML). Arbeitsbe-
richte des Instituts für Wirtschaftsinformatik. No. 9, Koblenz 1998

[FrHa97] Frank, U.; Halter, S.: Enhancing Object-Oriented Software Development with
Delegation. Arbeitsberichte des Instituts für Wirtschaftsinformatk, No. 2, Koblenz
1997

[Frz97] Franzke, A.: GRAL 2.0: A Reference Manual. Fachberichte Informatik, Universi-
tät Koblenz-Landau, 1997

[GoRu95] Goldberg, A.; Rubin, K.S.: Succeeding with Objects. Decision Frameworks for
Project Management. Reading/Mass. etc.: Addison-Wesley 1995

[How95] Howard, T.: The Smalltalk Developer’s Guide to VisualWorks. New York: SIGS
Books 1995

[IBM94] IBM: Introduction to OOP and IBM Smalltalk. IBM 1994
[Jac92] Jacobson, I.; Christerson, M.; Jonsson, P.; Overgaard, G.: Object-Oriented Engi-

neering. A Use Case Driven Approach. Reading/Mass.: Addison-Wesley 1992
[JoZw94] Johnson, R.E.; Zweig, J.: Delegation in C++. In: Journal of Object-Oriented Pro-

gramming. Vol. 4, No. 11, pp. 22-35
[KaSc96] Kappel, G.; Schrefl, M.: Objektorientierte Informationssysteme. Konzepte, Dar-

stellungsmittel, Methoden. Wien, New York: Springer 1996
[KaSu96] Kathuria, R.; Subramaniam, V.: Assimilation: A New and Necessary Concept for

an Object Model. REPORT ON OBJECT ANALYSIS & DESIGN, Vol. 2, No. 5,

1996, pp. 36-39
[Lie86] Lieberman, H.: Using prototypical objects to implement shared behavior in object-

oriented systems. In: OOPSLA, 1986, pp. 214-223
[Mal95] Malenfant, J.: On the Semantic Diversity of Delegation-Based Programming Lan-

guages. In: Proceedings of the OOPSLA95. New York: ACM 1995, pp. 215-230
[OMG99] OMG: Unified Modeling Language Specification. Version 1.3, June 1999
[Rat97] Rational: OCL. Version 1.1. 09/01/1997 (http://www.rational.com)
[Rum93] Rumbaugh, J. et al.: Object Oriented Modeling and Design. Englewood Cliffs/NJ:

Prentice Hall 1993
[Sci89] Sciore E.: Object specialization. In: ACM Transactions on Office Information

Systems, Vol. 7, No. 2, April 1989, pp. 103-122
[Ste87] Stein, L. A.: Delegation is Inheritance. In: Proceedings of the Conference on

Object Oriented Programming Systems, Languages, and Applications, Orlando,
Florida, October, 1987, pp. 138-146

[StMo95] Stonebraker, M.; Moore, D.: Object-Relational DBMSs: The Next Great Wave.
San Francisco: Morgan Kaufmann 1995

[UnSm87] Ungar, D.; Smith, R.B.: Self: The Power of Simplicity. In: OOPSLA '87 Confe-
rence Proceedings. ACM Sigplan Notices Vol. 22, No. 12, 1987, pp. 227-241

[Ver92] Veryard, R.: Information Modelling. Practical Guidance. New York, London etc.:
Prentice Hall 1992

[Weg87] Wegner, P.: Dimensions of Object-Oriented Language Design. In: Proceedings of
the OOPSLA87. 1987, pp. 168-182

[Wie95] Wieringa R.J., Jonge W. de, Spruit P.A.: Using Dynamic Classes and Role
Classes to Model Object Migration. In: Theory and Practice of Object Systems, 1,
1995, pp. 61-83

