The bicycle challenge in DMLA, where validation means correct modeling

it's possible!

Zoltan Theisz (evopro Systems Engineering Ltd., Hauszmann Alajos str. 2, Budapest, Hungary)

\ — evopro Gergely Mezei, Daniel Urban, Sandor Bdcsi (DAAI, Budapest University of Technology and Economics, Budapest, Hungary) BME

Step-by-step evolution of a concept

>>
Something ,Ncycle* (bicycle, unicycle, ...) Bicycle Mountain bike Model XZ362 My ,Black Thunder”
- Has wheel, seats, ... - Two wheels, one seat, ... - Constraints on wheels, seats - Concrete wheel, seat model - Concrete, physical bicycle
- Has weight - Has weight - Weight is in a range - Weight is set - Fully concretized entity
The DMLA approach
Core Bootstrap "\ “Bootstrap2 _~ Bootstrap3 DMLAScript
,The hardware” ,The operating system” .The programming language”
5 Gl struc.ture « Set of entities - enabler of multi-level meta-modeling « Hides tuples, more user-friendly
e » ASM State: snapshot of the model - Flexible and swappable . Entities & relations (Context illusion for related tuples)
Q « Model - nodes, edges, attributes (entities) . Multi-purpose meta hierarchy 0 i U ond| tion |
Q . Labeled directed graph « Operations (User-friendly operation language)
W . Entities have labels — entities are 4-tuples * Xtext-based
& - ID: unique 1D « Fully modeled by 4-tuples
ol . EEEI . Described by Abstract Syntax Tree (AST) built from entities
= Meta: reference to meta element , , ,
= . Value: . | (statements, expressions, if, for, variable, ...)
© alue concrete values —primitve . OperationDefinition with signature constraints
= = Attributes: list of contained entities (return type, parameters, ..
> statement " Constraint__ . OperationCall
M Management — perationCa
- Derived functions — obtaining information Expression
« Shared functions — snapshot evolution AST alomente String
Validation \ N Slots

« All entities support validation based on formulae
« Alpha: meta against instance /e.g. type conformance/
« Beta: meta against entities (in-context check) /e.g. cardinality/
« Gamma: all instances of a certain entity /e.g. unique serial number/
« Validation mechanism:
1. Loop over all entities
2. Obtain meta by the Meta ASM function
3. Fetch all alphas — hierarchy chain up to Base
4. Combine alphas (meta, instance) by AND
5. Combine entity validations by AND

e Fluid levels

= Stepwise refinement of domain concepts is decoupled
Meta - Instance is interpreted between two entities

Entities can refer to other entities on any levels
Consequence of real multi-level modeling
Entities are instantiated individually

e Partial instantiation

= Stepwise refinement: attributes are entities -> also independent

= Some of the features remain untouched, others a
= Entity instantiation = copy or concretize slots

re concretized

. General placeholder for data (e.g. fields/properties)

e Constraints attached to slots
= Type constraint

= Cardinality

= Operation signature

= Must Fill Once

= Self-described & extendable

« ComplexEntity.Children
 Stepwise concretization/constraining

Patte rns BicycleEntity: ComplexEntity ke
ComplexEntity.Children
Notations .- » > AbstractEntity: ComplexEntity.Children{T: $Bool, C:0..1}
____________ nstantiation SellingAct: BicycleEntity > CheckPhysical: Complexentity.Children{Op: $Bool:()}
°| Concrete object > SoldBicycle: ComplexEntity.Children{T: $Bicycle, C:1..1} BicycleEntityAlpha: Base.AIanVaIidation{Op: $Bool:(ID)}
X7| Entity sketch only > Selllnanc.e: Complexentlty.ChlIdren{T: $Number, C:1..1} Ir-'
ComptexEntity-Children

Component: BicycleEntity

. Prohibition of features or their relation can be simply left out
since validation will fail if disallowed entities occur in the model.

> Weight: ComplexEntity.Children{T: $Number, C:1..1}
> Size: Complexentity.Children{T: $Number, C:0..1}

P AR
- [~o

- | \ S~

P1:. Gradual type constraining is supported by restricting 'Wheel: CSmponent

\ ~

constraints on slots. |

\ |Seat: Component

\ !
\

P2: Create new slots by dividing general purpose slots, when
new features are needed. Keep the original slot if adding new
features may be required later or omit it otherwise.

\
'Suspension: Component

|
|
|
|
|
|
|
|
|
I

P3: Mandatory slots are modeled by cardinality 1..1. They Frame: Component

must be kept all along the whole instantiation chain. Optional |> TopTubeLength: ComplexEntity.Children{T: $Number, C: 1..1}

slots are modeled by cardinality 0..1. They can be omittedon |>D

ownTubelength: : ComplexEntity.Children{T: $Number, C: 1..1}

any level. Optional-mandatory slots are modeled by cardinality
0..1 and the MustFillOnce constraints. They can be omitted on

'RaceFrame: Frame

. ‘ Config: BicycleEntity F_“

‘ > Components: ComplexEntity.Children{T: $Component, C: 0..*}

‘Tandem: Ncycle |

Ncycle: Config

>Wheel: Config.Components{T: $Wheel, C: 1..3}

‘ (Seat C: 2..2)

Unicycle: Ncycle
(Wheel C: 1..17)

>Seat: Config.Components{T: $Seat, C: 1..2}
>Frame: Config.Components{T: $Frame, C: 1..1}
_ 21 >0OtherComps: Config.Components{T: $Component, C: 0..*}

- >SalesPrice: ComplexEntity.Children{T: $Number, C:0..1, MFO}

’
Y

e
Z

Bicicyle: Ncycle

Wheel: Config.Components{T: $Wheel, C: 2..2}
> Suspension: Ncycle.OtherComps{T:$Suspension, C: 0..1}

1
J

’/’
-

CityBike: Bicycle |

7
7

,r’7 k
7/ \
7 \

> GetAvgActualSalesPriceMethod: ComplexEntity.Children {Op: $Number()}
[

.~ | RaceBike: Bicycle

Frame: Ncycle.Frame{T: $RaceFrame, C: 1..1}

7
\MountainBike: Bicycle ’ >CertifiedByUCI: ComplexEntity.Children{T:$Bool, C: 1..1}
A

‘(Suspension: (.; 1.1)

any level supposing their value has been set earlier. |

|
'Mike'sBike: MountainBike®

P4: Inheritance between entities is imitated by instantiation

operation Bool ID::BicycleEntityAlpha(ID instance)

F_ ! (Price= 1000) |

ProRaceFrame: RaceFrame

‘(Alpha validat[on:z Weight <5200)

———— e —————]

|
: ProRaceBike: RaceBike

Frame: Ncycle.Frame{T: $ProRaceFrame, C: 1..1}
CertifiedByUCI: RaceBika.CertifiedByUCI = true

-7 T

7~

7

‘Tony’sBike: ProRaceBike °

|
_ChallengerA2XL: ProRaceBike

(Price= 1500)

Frame: Ncycle.Frame{T: $RocketA1XL, C: 1.1}

Object method = GetAttributeValue(instance, $BicycleEntity.CheckPhysical);
if(method!=null && !call searchRoot::method()) { return false; }

ID meta = call $Meta(instance);

if(meta== $BicycleEntity) return true;

return CallCheckPhysicalOnMetaHierarchy(searchRoot, meta);

}

P10: Custom validation can be driven by flags. If the flag is
presented, the validation is turned off, if the flag is omitted, the
validation is switched on.

e

DMLA Webpage:
http://www.aut.ome.hu/Pages/Research/VMTS/DMLA
"n

The Bicycle challenge:

http://www.wi-inf.uni-duisburg-essen.de/MULTI2018

SalesPrice: Ncycle.SalesPrice = 4999

A A

{

Number sum = 0; Number cnt = 0;
foreach(entity in GetAllEntities) {
if (DerivesFrom($SellingAct, entity)) {

if(DerivesFrom(this,

cnt = cnt + 1 ;

sum = sum + GetAttributeValue(entity, $SellingAct.
// sum = sum + GetAttributeValue(entity, $Bicycle.
333}

if (cnt > 0) return sum/cnt; else return 0;

}

if (GetAttributeValue(entity, $BicycleEntity.AbstractEntity)==null) {

GetAttributeValue(entity, $SellingAct.SoldBicycle))) {

{ |
if (GetAttribute(instance, $BicycleEntity.AbstractEntity)==null) { (ROCkEtA 1XL: ProRaceFrame = — — — — o ———— —— — o e o e e e _I l|
if(!(CallCheckPhysicalOnMetaHierarchy(instance, instance))) return false; (Weight = 920) - | _ | :
T Joe'sOldRocketFrame: RocketA1XL Bill'sBike: ChallengerA2XL :
} , |
‘ (Frame = $Joe’sOldRocketFrame) Joe'sBike: ChallengerA ZXL"
operation Bool CallCheckPhysicalOnMetaHierarchy(ID searchRoot, ID instance) { operation Number ID::GetAvarageActualsalesPriceMethod() (AbstractEntity) (Price= 10 000) ’

SellingPrice);
SalesPrice);

11. Derived properties are added to entities as

operations. In case of summation, the instantiation chain

can be usedin alayer-transparent fashion.

P5: Enum and bitfield-like requirements are modeled
as an enum type with its slot-less instances.

P6: Slots can represent signature-driven
operation definitions atall concretization levels.

P7. Alpha formula completes an entity’'s type
semantics beyond meta-hierarchy.

P8: Global validation requirements are satisfied by
gamma formulas.

P9: Soft validaton, i.e., filtering features are
supported by operations attached to the entities.

This work was performed in the frame of FIEK 16-1-2016-0007 project, implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the FIEK 16 funding scheme.
The research has been supported by the European Union, co-financed by the European Social Fund. (EFOP-3.6.2-16-2017-00013).

