
Applying Multi-Level Modeling to Data
Integration in Product Line Engineering

Damir Nešić, Mattias Nyberg

{damirn, matny}@kth.se
ITM/MMK/MDA

Royal Institute of Technology
Brinellvägen 83, 100-44 Stockholm, Sweden

Abstract. Developing safety critical, Software-Intensive Systems ac-
cording to the Product Line Engineering (PLE) paradigm is a process in
which many different engineering artifacts are produced and bound with
configuration management data. Different artifact types are maintained
by different tools, sometimes even manually, which makes automated
analysis involving several types of artifacts a challenging task. Overcom-
ing this issue can be achieved through data integration of existing data
and a promising technology for robust and scalable data integration is the
Linked Data (LD) technology. However, because the primary use case for
LD is data integration on Internet, its information modeling capabilities
in an enterprise setting are limited. This paper reports on the experiences
from applying the Multi-Level conceptual Theory, to the problem of in-
formation modeling for data integration in the context of PLE using the
principles of LD. Being a powertype based framework, MLT allows sepa-
ration of the class and instance facet of modeled entities thus facilitating
practical implementation. Formal definitions of modeling construct are
essential for creation of unambiguous models and some of the constructs
that MLT defines are particularly useful in a data integration scenario
but there are certain aspects of the studied case that could not be ex-
pressed using MLT. The studied case comes from a real data-integration
project from the heavy vehicle manufacturer, Scania CV AB.

Keywords: Multi Level Modeling, Information Modeling, Product Line Engi-
neering, Linked Data

1 Introduction

Large scale development of safety-critical software-intensive systems (SIS) is a
process involving various engineering disciplines that produce many engineering
artifacts across the SIS lifecycle, e.g. software, hardware, various models and
documents. The artifact data is usually analyzed in order to ensure their con-
sistency, e.g. in terms of consistent versioning or tracing, and more importantly
in order to establish product safety or reliability with respect to standardized



2

norms. All these analyses are vital for development and deployment of afore-
mentioned SIS. However, it is often the case that different tools maintain differ-
ent artifacts in different formats. Moreover, some artifacts might be maintained
manually and coupled with their great diversity, performing automated analyses
described above can be a daunting task [21].

Development of highly configurable SIS, also known as Product Line Engineer-
ing (PLE) [19], brings additional difficulties. The goal of PLE is systematic reuse
of engineered artifacts among different product configurations. In other words,
performing the analyses described above are always with respect to particular
product configurations, i.e. the artifact data is contextualized with respect to
product configurations. It is common that besides different types of meta-data,
each artifact is labeled with configuration data that has first-class citizen status
but is also scatered across different tools and documents [15, 19].

In order to avoid costly migration to a new toolchain and processes with the
goal of enabling previously described automated analyses, data integration [8]
techniques can be used to extract and integrate existing artifacts data from ex-
isting tools into a unified representation that allows performing the analyses.
Besides the traditional approaches to data integration [11, 8] underpinned by
technologies like relational databases [12] and ER or UML information mod-
els [12], the idea of Linked Data (LD) [4] has in recent years been applied to the
problem of robust and scalable data integration on Internet, but also in different
engineering domains, primarily through OSLC standards [18].

Some important benefits of LD are: a standardized data model, well-defined
semantics of the data, support for incremental integration, and scalable and
robust data manipulation through web protocols. In an enterprise, all these ben-
efits should support creating structured and well-formed data that conforms
to an information model that in turn captures all domain constraints allowing
above mentioned analyses. However, LD principles are primarily aimed at data
integration on Internet, a highly distributed system that is not concerned with
data structure or its truthfullness. Consequently, information modeling for LD
is not tailored to support the enterprise data-integration use case. As an alterna-
tive to information modeling frameworks supporting LD, like RDFS and OWL
languages, but also to traditional MOF-compliant modeling frameworks, we have
investigated [16] the applicability of Multi-Level Modeling (MLM) paradigm [14,
2] for information modeling in the PLE context. More specifically, the Multi-
Level conceptual Theory (MLT) [7] was evaluated and complemented with PLE-
specific concepts in order to support modeling of different artifacts and their
configuration data.

In the present paper we report on the experiences from applying the frame-
work presented in [16] on the case of LD information-model creation for data
integration in the real industrial PLE context on the case of the heavy vehi-
cle manufacturer, Scania CV AB. This report contributes to the field of MLM
in two ways: firstly, the considered case comes from a real, large-scale data-
integration project for safety-critical SIS development, thus contributing to the
limited knowledge about MLM paradigm applicability in the industrial setting;



3

secondly, the information model is intended for data integration in a PLE context
based on LD principles which a is novel application for MLM approaches.

The rest of the paper is organized as follows. Section 2 presents relevant PLE
and LD concepts followed by the MLT framework with PLE extensions as the
framework for LD information modeling. Section 3 presents the details of the LD
information-model and its use in the data integration process. Section 4 discuses
the benefits and shortcomings of the applied modeling framework and is followed
by Section 5 that surveys related work. Finally, Section 6 concludes the paper.

2 Background

This section introduces the PLE and LD concepts followed by a brief introduction
to the MLT framework and PLE extensions from [16].

2.1 Product Line Engineering

The main idea of PLE is to engineer artifacts that realize or describe a product in
a way that these artifacts can be systematically reused in different product con-
figurations. Capturing artifact reuse is achieved by representing different product
configurations in terms of configuration options, also known as features [19]. For
example, an individual truck configurations could be described as having fea-
tures: engine, brakes, cab, trailer and optionally another trailer. The features
and their mutual dependencies are captured in a variability model [19], in the
case of features known as the feature model [3], that captures all possible product
configurations in terms of features. Left part of Figure 1 shows a fragment from
a feature model. An example of a dependency could be, if a truck configuration
has small brakes then it cannot have a strong engine.

Fig. 1. Basic idea behind the Product Line Engineering development paradigm

Once the variability model is established, features can be mapped to one
or more artifacts. For example, if a product configuration has a strong engine,
then a particular engine control sofware must be used. The mappings between



4

the features and artifacts are known as presence conditions [20] and they are
exemplified in the middle of Figure 1. The presence conditions are arbitrarily
complex propositional formulas over the set of features in the variability model.
Individual products can be derived by using the product configurator, that based
on the selection of features, composes corresponding artifacts into individual
products. Figure 1 exemplifies the overall idea of PLE.

In Scania CV AB, there are several tens of different types of artifacts and
they are maintained either manually, in hand-written documents, or in multiple
in-house and third-party tools. The number of features is around seven thousand
while the number of presence conditions is in the order of millions and they are
maintained together with the artifacts in different tools. All of this implies that
in order to be able to perform automated analysis over several different types
of artifacts with respect to different product configurations, it is necessary to
integrate the artifact data from different sources.

2.2 Linked Data

Linked Data is a set of principles for publishing and structuring data on Inter-
net. The principles can be summarized as: each entity is identified by a Uniform
Resource Identifier (URI) and is called a resource; the result of any operation
over the resources is always presented in a standardized format, i.e. Resource De-
scription Framework [24] (RDF); whenever possible, resources should have links,
also URIs, to other resources. The main technologies used for creation of LD are
the aforementioned RDF data model and its data modeling extension RDFS
Schema [24], a query language called SPARQL [24], and an inference language
called Web Ontology Language [24] (OWL). There are also other standardized
technologies which are not relevant for the present paper.

Publishing LD is a process in which the data from existing sources is assigned
with URIs so that each piece of data, regardless if it is atomic or complex, can be
serialized into RDF according to an LD schema [23]. LD schema is an informa-
tion model of the published data that is usually expressed in the RDF Schema
(RDFS) language or Web Ontology Language (OWL) language, which define
LD vocabularies for information modeling. Unlike in traditional data integra-
tion where a high level modeling language describes the overall data integration
schema, in LD ”the data schema is represented with the data itself” [23], i.e.
RDFS and OWL are syntactically the same as the data expressed in RDF. The
RDFS language defines a vocabulary with concepts of class, relation specializa-
tion, grouping of resources into containers, and definition of mostly string-valued
attributes. Interestingly, although not stated explicitly, RDFS is underpinned
with the concept of an unlimited number of abstraction levels, similar to MLM
approaches. The OWL language defines a richer vocabulary with concepts like
class disjointness, relation cardinality, inverse relations and others, but it does
not support MLM concepts. Furthermore, both RDFS and OWL assume the
open-world assumption [5] (OWA), i.e. any information that is not stated is just
unknown but not false.



5

An example of a reusable vocabulary is the Friend Of A Friend (FOAF)
vocabulary which defines concepts about people and their relationships. The
idea is that whenever some LD is published, the terms from existing vocabularies
should be reused. For example, whenever a piece of LD expresses that a person
has a certain role, e.g. professor, employee etc,. the definition of Person from
the FOAF vocabulary should be used.

The appeal of LD for enterprises lies in the robust and generic web-based
principles for data exchange and querying, the possibility to reuse existing vo-
cabularies, and incremental development because adding new entities to the
information model does not falsify the previous one. The basic idea of data in-
tegration implemented in Scania CV AB, following the LD principles, is shown
in Figure 2.

Fig. 2. Illustration of data integration in Scania CV AB based on LD principles

Figure 2 illustrates that various artifacts from existing tools are published as
LD and stored in a central database that can then be used for different types
of analyses across the product lifecycle. Grey filled interfaces represent adapters
that create URIs for tool artifacts and their attributes. Currently, data integra-
tion is limited to three tools: software versioning tool, product data management
tool and the requirement specification tool. Once stored in the central database,
the data can be accessed through purpose build application, here LD tool 1 that
can directly interpret LD. The evolution of the data integration is to enable both
publishing and consuming LD by existing tools, like exemplified on the case of
Tool 4.

The OWA-based modeling frameworks that support publishing LD work well
in the case of Internet because the complete data is never known and arbitrary
changes can occur. On the contrary, enterprises want to analyze their data in
order to establish certain properties about the product, make business decisions,
check if established processes are followed, all of which requires an information
model that preciselly captures all possible types or concepts, relations, and con-
straints in the enterprise. To facilitate this, the information model should follow
the closed-world assumption where any unstated information is false. Further-
more, as noted in [17], in data integration instances from one tool can be classes



6

in another tool and once this data is integrated into a single database, the in-
formation model should be able to capture this fact, i.e. it must be expressed
using MLM concepts. Since both RDFS and OWL languages are OWA based,
and they do not provide any support for MLM, a different information modeling
framework is needed in order to leverage the benefits of LD for enterprise data
integration.

2.3 Multi Level Theory for Data Integration in PLE

This section briefly introduces the Multi-Level conceptual Theory (MLT) con-
cepts togeter with PLE extensions that were introduced in [16]. Detailed expla-
nations of all the concepts are presented in the next section in conjunction with
the information model created using the MLT framework.

The MLT framework differentiates between three primary concepts. These
are types, individuals, and attributes. Types and individuals are commonly re-
ferred to as entities. Types are semantically interpreted as sets and they are
organized into an arbitrary number of abstraction levels where each level is
represented by an order type. Each type declared in an MLT model is a spe-
cialization of an order type and an instance of the immediately higher order
type or some of the higher order type specializations. Order types are called
IndividualOT, representing types whose instances are individuals that cannot be
instantiated further, FirstOT, whose instances are specializations of the Individ-
ualOT, SecondOT whose instances are specializations of the FirstOT and so on.
MLT is a powertype-based MLM framework, i.e. unlike the deep instantiation
frameworks [14], the type-facet and the instance-facet of a type are modeled on
two different but adjacent abstraction levels.

Attributes are used to represent properties of types and instances of types.
Semantically, attributes represent relations between two sets; either a between a
type and a data-type or between two types. In the latter case, this corresponds
to relations between types. Syntactically, this distinction is reflected in the vi-
sualization of the MLT model. Attributes are visualized similar to attributes
in traditional class modeling while the attributes corresponding to relations are
visualized as directed associations between classes. An important aspect of the
MLT framework is that all constructs are defined in first-order-logic which leads
to unambiguous models.

MLT framework differentiates between basic and structural relations. Struc-
tural relations are relations that hold between types while the basic relations are
relations that hold between instances of types. Work in [16], discusses and disam-
biguates basic relations between different artifacts that are product-configuration
specific (PCS) and that inherently occur in the PLE context. Each PCS rela-
tion is the consequence of previously mentioned artifact-presence conditions that
specify the subset of all product configurations in which the artifact can be used.
In other words, each presence condition defines the so-called product group type,
whose instances are specific product configurations. In this way, presence condi-
tions that are commonly just syntactical artifact annotations, become first order
citizens in the MLT information model.



7

Fig. 3. MLT information model for data integration according to LD

3 Information Modeling Using Extended MLT

The model in Figure 3 captures the details about requirement artifacts from
the requirements tool and the Product Data Management (PDM) tool regarding
Electronic Control Units (ECUs), i.e. embedded computers that are a part of
each vehicle. The complete model is several times larger and it includes more
artifact types but the excerpt in Figure 3 captures all relevant model aspects.

Because, the information model is used for data integration in the form
of LD, the attributes of types and relations between types are reused from
various LD vocabularies. The notation prefix:name represents a shorthand for
vocabularyURI/name. For example, dcterms:description is a shorthand for
http://purl.org/dc/terms/description where the attribute description is
defined. The prefix scania is used in the case when these terms were defined for



8

the purpose of creating the scania-specific information model. An underscored
attribute is an attribute of the entity while a non-underscored attribute is an
attribute of the instances of the type which is labeled by it. Figure 3 exempli-
fies underscored attributes that have special significance while it omits common
attributes like rdfs:label, dcterms:description, and dcterms:created.

The rdf:type relation is the RDFS vocabulary term equivalent to the in-
stance of relation. It should be noted that all types specializing type FirstOT

are instances of the type SecondOT but the instance of relations are omitted in
order to reduce clutter. Types with dashed boarder are examples of types that
are added automatically by the adapters while the remaining types are part of
the information model.

3.1 Created Information Model

In Figure 3, types specializing the IndivudalOT type capture the information
that each instance of the type Truck is specified by one or more instances of
type Requirement and that each instance of the type Truck has one or more
parts which are instances of type ECU. Types Requirement, ECU, and Truck are
instances of type ScaniaConcept which represents stable concepts in the domain
whose definitions change very rarely.

Types Requirement and ECU are partitioned by types RequirementItem and
ECUItem, following the so-called the type-object pattern recognized in [14]. The
partitions relation, based on the powertype relation, implies that all special-
ization of the partitioned type are pairwise disjoint instances of the partition-
ing type. For example, Scania currently has around 80 different ECUs that
are instances of type ECUItem. Type ECUItem is a specialization of the type
ScaniaItem which represents domain concepts that change on a yearly basis. The
relation between types ScaniaItem and ScaniaConcept is the isSubordinateTo
relation and it implies that each instance of type ScaniaItem must be a special-
ization of an instance of ScaniaConcept.

Type ECUItem has an attribute called scania:componentCode that is a reg-
ularity attribute, denoted by placing the attribute in parenthesis preceded by
the letter R. According to the MLT framework, a regularity attribute is an at-
tribute such that each attribute value is unique to the instance that assigns it a
particular value. In Figure 3, the attribute scania:componentCode is assigned
with a value S8 by the type EMS which is the Engine Management System and
also an ECU. Any other value of the scania:componentCode attribute belongs
to a different specialization of type ECU. The attribute scania:componentCode

is a sticker on physical individuals used to differentiate between instances of the
type ECUItem, e.g. EMS and other, in order to connect proper cabling on the
assembly line.

There are only several basic relations between types in Figure 3. Besides the
dcterms:hasPart basic relation which is reused from the Dublin Core Meta Data
vocabulary, other basic relations like scania:specifies, scania:isVariantOf,
and scania:isVersionOf are defined for the need of this particular model. The
complete model defines more basic relations. For example, there are additional



9

types specializing types RequirementVariant and RequirementVersion along
with basic relations defining traceability and decomposition relations.

As mentioned, the original MLT was framework was extended in [16] in order
to support modeling of PLE concepts. In Figure 3, type EMS specializes the type
ECU. Similarly, type EMS1 specializes type EMS and type EMS1 v1 specializes type
EMS1. The structuring of types in a specialization hierarchy is a reoccurring
pattern in the model and is a consequence of the PLE approach which induces
creation of variants of different artifacts that are a part of different product
configurations. Type EMS1 represents one out of eight variants of EMS artifact
while the type EMS1 v1 is the most specific kind of an EMS ECU and it represents
one out of ten particular versions that are actually instantiated into parts that
are built into individual trucks. This is exemplified by representing a particular
individual :ems1 v1 which is an instance of type EMS1 v1 with a particular value
for the attribute serial number, i.e. scania:SN="1234".

Being a reoccurring pattern, the previously mentioned specialization hier-
archy pattern can be captured on the FirstOT level. As previously described,
relations partitions and isSubordinateTo force the structuring of instances
of types related by these relations into specialization hierarchies. For each set
of types that have the same supertype, e.g. EMS1,...EMSn and EMS, there is a
isSubordinateTo relation between the types whose instances are placed in the
specialization hierarchy, e.g. ECUVersion and ECUVariant. Furthermore, in order
to capture relations between variants and versions of any type of artifacts, types
Variant and Version are defined together with a scania:isVersionOf relation
between them and scania:isVariantOf relation between types Variant and
ScaniaItem. In order to make the notation more succinct, the rdfs:subClassOf
relation that is the consequence of the subordination relation, and the isVariantOf
and isVersionOf relations are represented by the same graphical symbol, the
specialization arrow.

Finally, type Product group and its instances capture the product config-
urations in which an artifact can be used. If we recall the principles of PLE
described in Section 2.1, artifacts are labeled with presence conditions written
over the set of features and during product derivation the selected features en-
tail truthfulness of some of the presence conditions which in turn leads to the
composition of a product configuration composed of artifacts that are labeled
with presence condition evaluated as true.

As outlined in Section 2.3 and according to [16] a presence condition of type
EMS1 v1 defines a type that is a specialization of the type Truck, i.e. the type
that corresponds to all product configurations, and represents product config-
urations that can be described with features entailing the truthfulness of the
EMS1 v1 presence condition. Each such type is a specific product group, e.g.
EMS1 v1 Product Group, and is an instance of the type ProductGroup defined
on the FirstOT level. The relation dcterms:hasPart between types EMS1 v1

Product Group and EMS1 v1 is a Product-Configuration Specific (PCS) relation.
In Figure 3, the PCS relations is modeled between type ProductGroup and type
Version but the full model also contains relations between type ProductGroup



10

Fig. 4. Integrating data from different tools according to the information model

and types Variant and ScaniaItem. In other words, instances of types Variant
and ScaniaItem can also be specific for certain product configurations.

3.2 Using the Information Model

Figure 4 omits most of the details from the information model shown in Figure 3
in order to illustrate the generalized usage of the information model for data
integration according to LD.

As previously discussed, the types in the information model represent various
engineering artifacts across the product lifecycle. According to Section 2.2 and
Figure 2, in order to transform the artifact data into LD, it is necessary to
implement adapters for the tools maintaining the artifacts that will transform



11

the artifact data from the internal format into LD format. In Figure 4, black
boxes indicate that a particular tool maintains instances of the indicated classes.

The entities with a dashed border, either types or individuals, are instances of
the types owned by different tools and they are published as LD by the different
tool adapters. The need for an MLM based approaches is illustrated by types
owned by Tool 1 which are instances of types owned by Tool 2. Because MLT is a
powertype-based approach that forces strict stratification of modeled entities into
abstraction levels with instantiation relation between them, the implementation
of adapters using traditional programming languages with two-level concepts was
not difficult. Each adapter was responsible for a set of types and their instances,
while the types not owned by any existing tool are published by an additional
”virtual” adapter. The number of types published by the adapters is in the order
of magnitude of tens of thousands. The number of individuals published by the
adapters corresponds to the number of products and their constituting parts
which yield millions of individuals. It should be noted that these numbers of
LD resources were reached after several increments of the information model
and that initial numbers were much smaller. However, incremental integration
and evolution of the information model is one of the strengths of LD and the
incremental approach was beneficial for gradual adoption and structuring of
domain knowledge.

Currently, the first version of data integration and tool adapters from three
tools is in place. As of now, the primary usage of the integrated data is for differ-
ent stakeholders to visualize, navigate, and explore relations between different
types of artifacts using an in-house developed tool called Search & Browse. Part
of the future work is to define and implement standardized analysis operations
over the data that target different use cases like consistency checking, change
impact analysis etc. Also, in order to automate adapter development and data
validation, future versions of the information model shall be created using a
model-driven approach based on the Lyo Toolchain [9].

4 Discussion

The case introduced in the present paper indicates that capturing a complex
information model for data integration in PLE context requires the use of an
MLM framework because instances from one tool can be types in another tool.
The particular MLM framework that was used in the present paper, the MLT
framework, offers many benefits but there are also some shortcomings.

Most importantly, MLT defines partitions and subordination relation which
were essential for capturing the item-variant-version pattern. Furthermore, reg-
ularity attributes are a succinct way to express the constraint that different
attribute values lead to the creation of new types. The fact that MLT is a
powertype-based MLM framework means that for each partitions relation,
there is an additional type defined [14] compared to the deep instantiation ap-
proaches. However, because the end goal is data integration and the majority of
types are created automatically by tool adapters, this does not create significant



12

overhead for the modeler. Moreover, the separation into two types, the partition-
ing and the partitioned type, provides a type where instance-facet attributes can
be declared and a type where type-facet attributes can be declared.

Regarding the practical aspects of using the MLT framework, the absence
of tool support was the biggest challenge. Although a MLT-UML profile was
suggested in [6], it was not implemented and MLT models had to be created
and debugged manually. As a part of the future work with the Lyo toolchain, we
are extending its graphical modeling tool to support the MLT framework with
extensions from [16].

Being a powertype-based MLM approach, MLT does not support express-
ing some information. There are two examples where deep instantiation and
dual-deep instantiation are needed. First example concerns the componentCode

regularity attribute. As mentioned earlier, componentCode is a sticker on phys-
ical individuals which are instances of version types, like EMS1 v1, therefore it
can be considered as the attribute of individuals. However, because types like
EMS1 v1 are added by the adapters, i.e. they are not present in the information
model, the componentCode attribute must be modeled as an attribute of one of
the ECU related types on the FirstOT level. If MLT framework had supported
deep instantiation, the componentCode attribute could be modeled as an at-
tribute of type ECUItem with potency=2 and then all specializations of the type
EMS would inherit that attribute thus yielding the desired result. In the absence
of deep instantiation capability, we have resorted to the solution presented in
Figure 3 which yields a different result but it is sufficient for the current use case
of the integrated data.

The second example concerns a use case for dual-deep instantiation. For ex-
ample, individual ems1 v1 could have an attribute scania:assembledBy whose
value is scania employee. Simultaneously, any type on any abstraction level has
an attribute dcterms:created whose value should also be scania employee. In
this scenario, two different attributes on two different abstraction levels are
related to the same type which is basic idea of dual-deep instantiation. Cur-
rently, the information model does not treat this issue in any way because type
ScaniaEmployee is not defined in the information model but in the future it must
be incorporated even though MLT does not support dual-deep instantiation.

5 Related Work

Reports about applications of Multi-Level Modeling approaches on real cases
are still rare, particularly in areas other than model-based software development
including software architectures and domain-specific languages.

In [10], standardized IT management frameworks for enterprise infrastructure
modeling, evolution and decision making are surveyed and common obstacles
and prospects for improvement are identified. Following the survey, a multi-level
modeling languages XMF and FMMLx are evaluated against the previously de-
fined obstacles. The report in [22] also looks at enterprise architecture modeling
using a modeling language developed during industrial projects. The language



13

Txture uses both multi-level modeling concepts and traditional two-level model-
ing concepts and the authors claim that a language with enough expressiveness
for capturing complex domains must support concepts both from multi-level and
two-level languages.

Work in [1] tackles the problem of mapping domain specific concepts to con-
cepts from automotive safety standards by introducing a mapping layer which
leads to a multi-level model. In the absence of an adequate MLM framework for
the presented problem, the paper introduces the DeepML language that com-
bines constructs from several MLM frameworks. The approach in [13] treats the
problem of interoperability between information systems, a similar problem to
the one discussed in the present paper. The authors propose a new language that
extends the concepts of specialization and instantiation in order to increase lan-
guage expressiveness. The extensions are formally captured and then evaluated
against a set of criteria such as modularity, level stratification and etc.

6 Conclusions

Constant increase of product complexity in PLE development of SIS forces en-
terprises to perform ever more complex analyses of different artifacts across the
product lifecycle in order to check consistency or prove safety or reliability. One
way to enable automated analysis of artifact data is data integration of existing
artifacts into a unified representation. This paper has reported on the experi-
ences from applying an MLM framework, particularly the MLT framework, for
creation of an information model for data integration according to LD principles
in the PLE context on the real industrial case of the heavy vehicle manufacturer,
Scania CV AB. MLT constructs like regularity attributes, partitioning, and subor-
dination have been particularly useful for the creation of the information model
but some concepts in the domain still require the absent deep and dual-deep in-
stantiation concepts. Being a powertype-based MLM approach, MLT has forced
clear separation of modeled entities into abstraction levels which has facilitated
adapter implementation using traditional programming languages. A significant
aspect of the MLT framework is the fact that all the modeling constructs are
defined in first-order-logic which facilitates creation of unambiguous models.
However, the lack of tool support prevents using the formal definitions in an au-
tomated fashion. As an integration technology, LD has proven useful primarily
in two aspects. Firstly, the ability to reuse definitions of attributes like creator,
description, or hasPart were a significant time-saver. Secondly, the possibility
to incrementally integrate data allowed gradual adoption and structuring of do-
main knowledge. Future work is targeted towards providing tool support for the
PLE extension of MLT framework that supports Linked Data principles.

7 Acknowledgments

This work was funded by the ITEA 14014 ASSUME project with the support
from Scania CV AB.



14

References

1. Al-Hilank, S., Jung, M., Kips, D., Husemann, D., Philippsen, M.: Using multi level-
modeling techniques for managing mapping information. In: MULTI@MoDELS
(2014)

2. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-
ware & Systems Modeling (2008)

3. Batory, D.: Feature models, grammars, and propositional formulas. In: SPLC ’05
(2005)

4. Bizer, C., Heat, T., Berners-Lee, T.: Linked Data: The Story so Far. IGI Global
(2011)

5. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc. (2004)

6. Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using a well-founded multi-level
theory to support the analysis and representation of the powertype pattern in
conceptual modeling. In: CAISE ’16 (2016)

7. Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for multi-level
conceptual modeling. Software & Systems Modeling (2016)

8. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edn. (2012)

9. El-Khoury, J., Gurdur, D., Nyberg, M.: A model-driven engineering approach to
software tool interoperability based on linked data (2016)

10. Frank, U.: Designing models and systems to support IT management: A case for
multilevel modeling. In: MULTI@MoDELS (2016)

11. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: The teenage years. VLDB
’06 (2006)

12. Halpin, T., Morgan, T.: Information Modeling and Relational Databases. Morgan
Kaufmann Publishers Inc. (2008)

13. Jordan, A., Mayer, W., Stumptner, M.: Multilevel modelling for interoperability.
In: MULTI@MoDELS (2014)

14. Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.
ACM Transactions on Software Engineering Methodology (2014)

15. Nešić, D., Nyberg, M.: Multi-view modeling and automated analysis of product
line variability in systems engineering. In: SPLC ’16 (2016)

16. Nešić, D., Nyberg, M.: Modeling product-line legacy assets using multi-level theory.
In: REVE@SPLC ’17. To appear. (2017)

17. Neumayr, B., Jeusfeld, M.A., Schrefl, M., Schütz, C.: Dual Deep Instantiation and
Its ConceptBase Implementation (2014)

18. OASIS consortium: Open services for lifecycle colaboration (2017), http://open-
services.net

19. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering.
Foundations, Principles, and Techniques. Springer-Verlag Berlin Heidelberg (2005)

20. v. Rhein, A., Grebhahn, A., Apel, S., Siegmund, N., Beyer, D., Berger, T.: Presence-
condition simplification in highly configurable systems. ICSE ’37 (2015)

21. Sudarsan, R., Fenves, S., Sriram, R., Wang, F.: A product information modeling
framework for product lifecycle management. Computer-Aided Design (2005)

22. Trojer, T., Farwick, M., Haeusler, M.: Modeling techniques for enterprise architec-
ture documentation: experiences from practice. In: MULTI@MoDELS (2014)

23. W3C Consortium: Best practices for publishing linked data (2017),
https://www.w3.org/TR/ld-bp

24. W3C Consortium: Semantic web (2017), https://www.w3.org/standards/semanticweb


