
Multilevel Modeling with MultEcore
A Contribution to the MULTI 2017 Challenge

Fernando Macías1,2, Adrian Rutle1, and Volker Stolz1,2

1 Western Norway University of Applied Sciences
{fmac,aru,vsto}@hvl.no

2 University of Oslo

Abstract In the context of MULTI 2017, and as a means of fostering discussion
and test the limits of the paradigm, the Bicycle Challenge was proposed to tackle
the issue that multilevel modelling still lacks a strong conceptual basis, consensus
and focus. This paper presents one solution to that challenge, i.e. creating a
multilevel hierarchy that represents the domain of bicycles as products composed
of different parts and with different features, starting from very abstract concepts
(components with weight and basic parts) and ending with one particular model of
bicycle with brand-specific parts. We analyse and "fix" the requirements, discuss
them, and present our solution using the MultEcore tool.

1 Introduction

The approach to deep metamodeling which we have used to solve this challenge is
implemented in the MultEcore tool [3]. This tool combines the best from the two worlds:
fixed-level metamodelling with its mature tool ecosystem, and multilevel modelling with
an unlimited number of abstraction levels, potencies and linguistic extensions. Using our
approach, model designers can seamlessly create a multilevel version of their hierarchies
while still keeping all the advantages they get from fixed-level ones. MultEcore facilitates
multilevel modelling without leaving the EMF (Eclipse Modeling Framework [1]) world,
and hence allowing reuse of existing EMF tools and plugins. The tool (and the solution to
this challenge) is available for download in prosjekt.hib.no/ict/multecore.

Mn

(instance)

Mn-1

M0

(fixed)

M1

...

ontologically typed

ontologically typed

ontologically typed

ontologically typed

linguistically

typed

LE 1

LE 2

Figure 1: Overview of the multilevel concep-
tual framework

A multilevel model hierarchy in Mult-
Ecore is defined as an ontological hier-
archy of models with a fixed, common
and generic topmost metamodel. In other
words, the ontological hierarchy does not
require a linguistic metamodel in order to
be consistent, as opposed to the clabject-
based proposals. Therefore, this hierarchy
is similar to MOF, but does not restrict
the number of new levels that the user
can create. An overview of the conceptual
framework behind MultEcore is displayed
in Fig. 1. Note that since the ontological

prosjekt.hib.no/ict/multecore


stack can grow downwards an arbitrary number of levels, these are indexed increasingly
from the top. The differentiating aspects of our conceptual framework are summarised
as follows:

– A multilevel modelling stack that does not require linguistic metamodels, synthetic
typing relations or “flattening” of the ontological stack.

– A realization of linguistic extension that differs from other approaches and allows
for several, independent linguistic metamodels orthogonal to the ontological stack.

– Looser linguistic typing: while every element in every model has an ontological
type, it does not require a linguistic type for each plugged linguistic metamodel.

– An extension of the two-level cascading approach that aides the implementation of
the framework as an extension of EMF which preserves full compatibility with its
model representations and tools, i.e. we make use of EMF native APIs and formats,
and keep the overload of the models as transparent as possible.

In the following sections we will show how we have designed the bicycle model in
the MultEcore tool, and argue for our design decisions.

2 Case Analysis

The considerations we took to complete the case description are:

– Not specifying a value for attributes is interpreted as that attribute being optional.
– All the bicycles are “well-formed”. That is, the hierarchy does not allow bicycles

with missing parts like a wheel.
– Unclear requirements that do not look suitable to be modelled are excluded.

Although some approaches are heavily based in the concept of depth for potency, in
MultEcore we do not want to constrain the number of abstraction levels when designing
the top ones. For example, the fact that the frame number for bicycles is unique can be
specified higher up in the hierarchy but instantiated at the level of one particular bicycle.
Similarly, the classifications defined in the description might be extended, adding even
more intermediate levels of abstraction before reaching the actual, “final” instances.
Hence, giving depth might in some cases act as a double-edged sword that makes it more
difficult to allow the hierarchy to grow when faced with new requirements.

3 Model Design

In this section, we present the multilevel hierarchy that addresses the challenge. We have
one subsection per level, for the sake of clarity, starting from the top-most level 1. In
level 0 we locate Ecore, which is not displayed. However, note that we will discuss the
requirements sequentially as they appear in the challenge description [5], which causes
changes in previously defined levels. These cases will be pointed out to avoid confusion.

About the visual representations, it is important to mention that the cardinality of the
references is only displayed in case it is different from 0..*, which is the default one, and
the most common and generic.



3.1 Level 1 - Configuration

According to the challenge description, the most abstract level consists of components
that can be composed of other components or basic parts. This resembles quite closely the
traditional object-oriented Composite pattern [2]. Hence, this model exploits inheritance
to achieve the pattern, as displayed in Fig. 2.

EClass 1-1

EClass 1-1 EClass

subc@1-1

EReference

Figure 2: Level 1: Configuration

Apart from the classes themselves, the description mentions that components may
have a weight, included as attribute. This attribute has potency 1–3, indicating that it can
be instantiated directly in the level immediately below, two levels below or three levels
below (levels L2, L3 and L4, respectively). This attempts to fulfil the requirement that
the knowledge about the domain must be located as high as possible. In case we want
to add more levels to our hierarchy, we would need to update this potency to a higher
number. Also, the sentence “There is a difference between the type of a component and
its instances” seems to clearly point out a separation between this level and the next one.

We have chosen the following concrete syntax in our tool. The type of a node is
indicated as a blue ellipse, e.g. EClass is the type of Composite. The type of an arrow is
written near the arrow in italic font type, e.g. EReference. The names of the nodes are
used as labels in the class-like rectangles; italics font means the node is abstract. The
potency of each node is written in a red rectangle on its top right corner. For arrows, it is
written after the arrow name separated by the @ character. For attributes, the potency is
written just before the attribute name. The potencies in MultEcore have a range, having
the default “1–1”, which means that they only can be instantiated directly at the next
level below. This means that the tool does not restrict whether an instance of a node with
potency 1–1 is reinstantiated or not. With the same reasoning, a node with potency 2–4
would mean that we can instantiate it directly at 2, 3 and 4 levels below, or a combination
of those, or we may not do so since instantiation is optional. The tool also provides a
hierarchy view in which all the models in a branch could be visualised as a modeling
stack, with typing relations between model elements at different levels being visualised
as dashed arrows.

3.2 Level 2 - Bicycle

The next level on the hierarchy contains the abstract description of a bicycle and its parts
(see Fig. 3). Most of the requirements from the description are quite straightforward to



model. The most relevant design decision is giving cardinality 0..1 to purchasePrice,
since some instances of it do not specify it. It has a potency of 2..2 since there are still
two levels to instantiate it below. Also, the fact that both wheels must have the same
size has been solved by the attribute wheelSize, instead of using a constraint that would
be more cumbersome. The fact that frames have a unique serial number can be easily
provided by exploiting Ecore’s ID feature.

Component 1-1

BasicPart 1-1 BasicPart 1-1 BasicPart 1-1BasicPart 1-1

frame@1-1 subc

handle@1-1 subc

front@1-1 subc

fork@1-1

subc

rear@1-1 subc

1

1

1

1
1

Figure 3: Level 2: Bicycle

3.3 Level 3 - Racing Bicycle

This level simply instantiates some attributes previously defined and specify new ones,
like the lengths of the different tubes for the frame (see Fig. 4). The fact that some bicycles
are suitable to certain environments did not look suitable for explicitly modelling, since
maintaining a list of them is cumbersome. At most, we consider that a simple string
attribute with the description could be added.

Bicycle 1-1

Frame 1-1
Handle 1-1

Wheel 1-1

Wheel 1-1Fork 1-1

racingFrame@1-1 frame

racingHandle@1-1 handle

frontWheel@1-1

front

racingFork@1-1 fork

rearWheel@1-1

rear

1

1

1

1

1

Figure 4: Level 3: Racing Bicycle

3.4 Level 4 - Pro Racing Bicycle

This level is quite simple, and just instantiates the attributes previously defined (see
Fig. 5). The most relevant feature is the restriction on the material of the wheels: “A
carbon frame type allows for carbon or aluminium wheel types only”. This requirement
is addressed in section 3.6.



RacingBike 1-1

RacingFrame 1-1 RacingHandle 1-1

FrontWheel 1-1

RearWheel 1-1
RacingFork 1-1

prFrame@1-1

racingFrame

prHandle@1-1 racingHandle

prFrontWheel@1-1

frontWheel

prFork@1-1racingFork
prRearWheel@1-1

rearWheel

1

1

1 1

1

Figure 5: Level 4: Pro Racing Bicycle

3.5 Level 5 - Challenger A2-XL

The last level required by the description is a specific bicycle model, where we can see
the instantiation of two attributes, weight and salesPrice, defined several levels above
(see Fig. 6).

ProRacingBike 1-1

ProRacingFra... 1-1 ProRacingHa... 1-1

PRFrontWheel 1-1

PRRearWheel 1-1ProRacingFork 1-1

prframe@1-1

prFrame

prhandle@1-1 prHandle

prfrontwheel@1-1

prFrontWheel

prfork@1-1 prFork

prrearwheel@1-1

prRearWheel

1

1

1
1

1

Figure 6: Level 5: Challenger A2-XL

3.6 Constraints

Some of the features represented in the previous subsections could have been addressed
by means of (multilevel) constraints, using a language like the one we describe at [4].
We chose, however, to create a hierarchy as simple and self-contained as possible. Hence,
the only constraint we create is specified as an implication, in the following manner: A
frame with the attribute material=carbon implies that either the front and rear wheels
have also material=carbon or that they have material=aluminium.

4 Evaluation

The proposed multilevel modeling hierarchy ended up having up to 6 abstraction levels
L0, . . . , L5, where the L0 level is the Ecore metamodel. The knowledge domain is at
level L2, just below the generic component model at level L1.

The model at L2 can be used as a DSL, or as a starting point for a software system
which could be used by bicycle retailers. Similarly, the model at level L3 can be used as
a DSL, or as a starting point for a software system which could be used by racing bicycle



retailers. An ordinary bicycle model, which is specified an instance of L2 at level L3,
would be in a sibling branch of the metamodel Racing Bicycle in the model hierarchy.

This Racing Bicycle specialised DSL or software could further be refined and
specialised to define a Pro Racing Bicycle metamodel. This specialised DSLs would
disallow racing bicycle and pro racing bicycle retailers from defining ordinary bicycles.
However, by changing the potency of the nodes at level L2 so that the upper bound is *,
we could relax on this restriction, if this was desirable. Hence, although the refinement
process has given rise to more specialised DSLs for special kinds of bicycle, e.g. pro
racing bicycles, we could still choose to create a DSL which enables usage of types from
upper levels than the Pro Racing Bicycle. That is, in our alternative solution with relaxed
potencies, a specific ordinary bicycle could be specified at level L3, L4 or L5, depending
on which created DSL one would like to use.

In http://prosjekt.hib.no/ict/multecore/ we show how Sirius [6]
could be used to create editors for a bicycle DSL given by the metamodel at level
L2. Indeed, editors could be created for any of the models in the hierarchy. This also
demonstrates the strength of our approaches in not leaving the EMF world which makes
it easy to create editors and other artefacts. Moreover, from the .ecore version of the
models it is possible to use EMF’s native code generation facilities and generate Java
code, or write other templates to generate custom code.

In our solution, it is not required to have associations between different levels.
However, if it was necessary, we would define them as cross-level constraints.

5 Conclusions

In this paper, we have presented a solution to the Bicycle Challenge proposed at MULTI
2017 workshop. Our multilevel modeling hierarchy ended up having up to 6 abstraction
levels where specific ordinary bicycles could be defined at the level L3, and with some
potency relaxation also on L4 and L5. However, specific pro racing bicycles could
only be defined at level L5. Our solution is based on the MultEcore tool and follows a
conceptual framework which enables EMF with the potential of becoming a multilevel
modelling framework. This facilitates usage of the rich ecosystem of EMF such as code
generation and DSL editor creation.

References

1. Eclipse Modeling Framwork. Web site. http://www.eclipse.org/modeling/emf.
2. E. Gamma et al. Design Patterns: elements of reusable object-oriented software. Addison-

Wesley, 1994.
3. F. Macías, A. Rutle, and V. Stolz. MultEcore: Combining the best of fixed-level and multilevel

metamodelling. In MULTI, volume 1722 of CEUR Workshop Proceedings, 2016.
4. F. Macías, A. Rutle, V. Stolz, R. Rodriguez-Echeverria, and U. Wolter. Formalisation of

flexible multilevel modelling. Submitted, available at http://prosjekt.hib.no/ict/
multecore/, 2016.

5. MULTI2017. Bicycle Challenge description, July 2017.
6. The Eclipse Project. Eclipse Sirius, Dec. 2016.

http://prosjekt.hib.no/ict/multecore/
http://prosjekt.hib.no/ict/multecore/
http://prosjekt.hib.no/ict/multecore/

	Multilevel Modeling with MultEcore A Contribution to the MULTI 2017 Challenge

