A Multilevel Approach for Model-Based User
Interface Development

Bjorn Benner

Information Systems and Enterprise Modeling,
University of Duisburg-Essen, Essen, Germany
bjoern.benner@uni-due.de

Abstract. Multilevel modeling is considered to provide advancements
over the traditional modeling approaches. It is applicable, among oth-
ers, to scenarios where more than two classification levels are required
and a rigid dichotomy between classes and objects needs to be relaxed.
As Model-Based User Interface Development (MBUID) inherently en-
compasses more than two classification levels, there are challenges which
cannot be accounted for with the traditional approaches (e.g., the propa-
gation of changes or the extensibility of modeling languages). Therefore,
it seems promising to apply multilevel modeling for overcoming these
challenges. In this paper, we show the applicability of the multilevel mod-
eling language FMML* and the language execution engine XModeler for
the MBUID-field. As a proof of concept, a corresponding prototype based
on FMML* and XModeler is presented which illustrates the benefits of
multilevel modeling.

Keywords: Multilevel Modeling, MBUID, FMML*, XModeler

1 Introduction

Multilevel modeling aims at providing benefits over traditional conceptual mod-
eling, e.g., by supporting arbitrary number of classification levels, increased ca-
pabilities of reuse and increased capabilities of integration [16]. Recently, the
interest in multilevel modeling has increased [16,10,6,9] and various multilevel
modeling approaches have been successfully applied in different areas, e.g., the
management of IT-infrastructure [18] or the process improvement in the auto-
motive domain [3].

Taking into account, on the one hand, characteristics of the traditional con-
ceptual modeling, on the other hand, lacking fulfillment of requirements (e.g.,
the propagation of changes or the extensibility of modeling languages), an addi-
tional area which seems to be promising as a further field for the application of
multilevel modeling is the Model-Based User Interface Development (MBUID)
[23,29]. MBUID utilizes different types of models (e.g., abstract user interface,
concrete user interface or final user interface) for the development of user inter-
faces (Uls) and aims at reducing the enormous time consumption of the manual

UI creation: about 48% of the source code and about 50% of the implementation
time is spent on the UI development [24].

MBUID utilizes models on different levels of abstraction for developing the
UI, thus, it would benefit from an arbitrary number of classification levels. As
those models are interdependent, changes in one model have to be synchronized
into the dependent models. Therefore, the capabilities for integration can sup-
port the mutual synchronization of models, thus, support the overall integrity.
Furthermore, MBUID would benefit from the increased capabilities of reuse, as
it is not desirable to create each UI from scratch.

Therefore, our goal is to investigate the applicability of the multilevel para-
digm for the the model-based development of Uls. To the best of our knowledge,
only one approach exists that applied multilevel modeling for model-based devel-
opment of Uls [19]. However, this approach targets the development of concrete
syntaxes and is limited by a predefined set of visualization types. Therefore, this
approach investigates only a small subset of the MBUID area. In opposition to
that, we do not focus on the design of the UI, but consider the UI’s entire life-
cycle, i.e., its execution, its modification as well as its adaption. Therefore, we
investigated not only the applicability of multilevel modeling but also the ap-
plicability of multilevel programming for MBUID approaches. Henceforth, the
combination of multilevel modeling with multilevel programming is understood
as the multilevel paradigm. Accordingly, the traditional paradigm is understood
as the traditional conceptual modeling in combination with prevalent program-
ming languages.

In order to accomplish the above-mentioned goal, first, generic requirements
towards the model-based development of Uls are identified. Afterwards, the ap-
proaches based on the traditional paradigm are evaluated against those require-
ments. Following, a multilevel approach is selected and the suitability of it for
satisfying these requirements is discussed, as well. Lastly, a corresponding pro-
totype is developed and presented.

The remaining of the paper is structured as follows: First, requirements to-
wards the model-based development of Uls are discussed. Following, the tradi-
tional paradigm is evaluated against those requirements. Afterwards, the multi-
level modeling approach FMML* and the language execution engine XModeler
are introduced, followed by a presentation of a prototype for a multilevel-MBUID
approach. Then, the application of the multilevel paradigm as well as the proto-
type are evaluated against the requirements. Finally, conclusions and an outlook
on future work are given.

2 Requirements Towards MBUID Approaches

Requirements towards MBUID approaches can be categorized into core and ad-
ditional requirements. Core requirements focus on the core functionalities of any
MBUID approach, e.g., the possibility to design models for the Ul creation. As
all MBUID approaches deliver those, following, we focus on the additional re-
quirements, which target advanced features enabling effective and efficient design

of Uls. Following, the most relevant additional requirements, taking into account
the goal of this paper, are presented.

R1 Foster Productivity: Considering all of the aspects that should be
accounted for while building a UI model (e.g., widgets, colors or arrangement),
building models is considered difficult [27]. Especially if the modeling language
only provides primitive (generic) modeling concepts, the creation of such rich
models is a cumbersome endeavor as everything has to be recreated from stratch.
Therefore, in order to support productivity of modeling a model, a modeling
language should provide semantically rich concepts which account for specific
characteristics of user interfaces [29,23].

R2 Foster Range of Reuse: Beyond this, MBUID approaches should be
applicable in a wide range of different scenarios (economies of scale) [1]. There-
fore, MBUID approaches should provide generic concepts which can be reused
in different situations. However, this claim stays in opposition to R1: In order to
foster productivity, an approach requires semantically rich concepts. However,
such specific concepts can presumably not be reused in a wide range of scenarios.
In contrast, for being reusable in different scenarios, an approach has to provide
generic concepts, which hampers the productivity.

R3 Transparent Propagation of Modifications: Due to the omnipres-
ence of change, developed Uls have to be adapted continuously to changed re-
quirements during their lifecycle. For this reason, it is necessary to modify the
corresponding models in order to satisfy those changed requirements. Subse-
quently, those changes should be reflected in the corresponding source code.
However, it should not be necessary to recompile the source code, but the Ul
should be adapted during runtime. Therefore, it is desirable to have a transparent
propagation of change which applies the changes in the model in an automatic
manner to the source code and maintains the overall integrity [29,15].

R4 Extensibility of Language and Adaptability of Tool: In literature,
the omnipresence of change is mostly discussed in terms of its implications for
the user interface, e.g., [15]. However, the omnipresence of change is mostly
neglected in terms of its impact on the approach itself. For example, it might be
desirable to add new concepts by refining existing ones (e.g., a refined Button
which adheres to a corporate design). In that context, it should not only be
possible to enhance the language on demand with a new concept, but also to
adapt the corresponding tool.

3 Shortcomings of the traditional paradigm

We argue that MBUID approaches which rely on the traditional paradigm cannot
entirely satisfy the additional requirements due to the limitations imposed by
the traditional conceptual modeling and corresponding tools implemented using
prevalent object-oriented programming languages.

In order to illustrate the implications of the prevalent paradigm on cur-
rent MBUID approaches, it is discussed using a prototypical MBUID approach
named the Cameleon Reference Framework (CRF) [8]. This framework presents

an overall structure for MBUID approaches which on the one hand is valid for the
majority of existing approaches [8] and on the other hand is used as a foundation
for new MBUID approaches [21,26,2,22,30,13,7].

The CRF constitutes a four-layered framework for structuring the develop-
ment and the adaption of Uls [8]. The four layers of the CRF are the Final
UI (i.e., the actual Ul implemented in a programming language), the Concrete
Interface (i.e., a non-executable platform- and interactor-specific model of the
UI), the Abstract Interface (i.e., an abstract specification of the UI) and Concepts
and Task Models (i.e., the specification of relevant tasks and domain concepts).
The layers are based on three types of so-called ‘ontological models’ [8]: domain-
models “support the description of the concepts and user tasks” [8, p. 294],
context-models “characterize the context of use in terms of user, platform and
environment” [8, p. 294] and adaption-models “specify both the reaction in case
of change of context of use and a smoothly way for commuting” [8, p. 294].

In order to transition from one layer to another, model transformation is
applied [26]. Model transformation is defined as the application of transformation
rules in order to translate a model into either text or another model (which
adheres to another metamodel) [14]. The translation from Concepts and Task
Models to Abstract Interface constitutes a model transformation, as both models
have different intentions, thus, they adhere to different metamodels.

In contrast, the transformation from the Abstract Interface to Concrete In-
terface is unsatisfactory. As an Abstract Interface is interactor-independent and
the Concrete Interface is interactor-dependent, several Concrete Interfaces can
be transformed or derived from one Abstract Interface [8]. Therefore, a number
of Concrete Interfaces can be characterized or rather classified by one Abstract
Interface. Thus, the Abstract Interface rather represents a kind of metamodel for
the corresponding Concrete Interfaces. Therefore, this relation can be regarded
as model transformation, because both models have different metamodels. How-
ever, an instantiation-relation between Concrete Interface and Abstract Interface
would be more appropriate because an Abstract Interface can be considered as
class for a number of Concrete Interfaces.

The transformation from the Concrete Interface to the Final UI is also
a model transformation, as source code (i.e., text) is generated based on a
model. However, the transformation itself is not satisfying, as it is afflicted by
well-known synchronization problems. If there are changes to the model, those
changes have to be transferred to the source code and vice versa.

The lack of an instantiation-relation and the necessity of code generation is
not caused by a misconception of the CRF itself. However, they are a consequence
of the traditional conceptual modeling in combination with the predominant
programming languages.

The “prevalent programming languages are restricted to the dichotomy of
objects and classes”[17, p. 32]. Therefore, there is only one classification level,
i.e., an entity is either a class or a corresponding instance. This dichotomy in pro-
gramming languages influences the tool support. Software tools which support
the development of MBUID models, implement the required modeling concepts

in a programming language. Thus, the modeling concepts are on the class-level.
Therefore, the created models are instances of the modeling concepts, i.e., in
the realm of those software tools, the created MBUID models are on the ob-
ject level [17]. However, those MBUID models are models of the generated Ul,
thus, they are conceptually (at least) on the level of classes. As consequence,
it is necessary to generate corresponding classes from the instances in order to
allow a further instantiation. Nevertheless, the usage of corresponding software
tools implies a mismatch between the conceptual and the technical level of a
MBUID model. Thus, the current MBUID modeling tools cannot adequately
support the MBUID approaches due to the limitations imposed by the prevalent
programming languages.

Due to these limitations, current MBUID approach are not capable of propa-
gating modifications transparently (R3). During design time, the existing models
are transformed into source code, which can be executed afterwards. If there are
changes to the source code, the corresponding source code is simply re-created,
i.e., these are changes on the class level. During runtime, it is not possible to
re-create the source code in that way, but it is necessary to adapt the existing
objects. For this reason, the models are interpreted first, followed by invoking
adaption mechanisms on the objects. Such adaption mechanisms are hazardous,
because an inappropriate adaption might lead to runtime failures. As traditional
conceptual modeling and predominant programming languages are not tightly
integrated, it is necessary to implement complex transformation mechanisms
in order to connect both. Therefore, the combination of traditional conceptual
modeling and predominant programming languages is not capable of propagating
modifications transparently.

Furthermore, the application of traditional conceptual modeling implies a
conflict between productivity (R1) and range of reuse (R2) as discussed in the
previous section. Traditional conceptual modeling does only allow satisfying one
demand while neglecting the other [17]: An approach can contain semantically
rich concepts (in the sense of domain specific modeling languages), thus, foster
the productivity. However, such concepts can presumably not be applied in a
wide range of scenarios. In contrast, an approach can contain generic concepts
(in the sense of general purpose modeling languages), which can be reused in
several scenarios. However, the concepts do not provide semantical richness,
thus, the productivity gained by its usage is rather low. Hence, the traditional
paradigm is only capable of satisfying either R1 or R2 at a time.

Beyond this, the traditional paradigm limits the extensibility of MBUID
approaches (R4). It enforces a strict separation of language specification and
language application. Hence, the addition of further language concepts require
modifying the language specification, first, and adapting the corresponding tool
afterwards. After recompilation, the enhancements can be used in the tool. Thus,
the traditional paradigm does not allow enhancing an approach during runtime.

As consequence, the prevalent paradigm consisting of traditional conceptual
modeling and predominant programming languages is not able to satisfy the

identified requirements. Therefore, in the next section, we investigate an alter-
native paradigm comprising a multilevel modeling and programming approach.

4 Multilevel Modeling and Language Execution Engine

In order to satisfy the identified requirements, an approach is required which sup-
ports multiple levels of classification as well as a corresponding execution engine.
Although different multilevel modeling approaches exist(e.g., [4,25]), to the best
of our knowledge there is no other pair of multilevel modeling approach and cor-
responding language execution engine besides FMML*(Flexzible Meta-Modeling
and Execution Language) [16] and XModeler [11,12]. Therefore, it becomes our
approach of choice.

FMML* builds on XCore (the XModeler metamodel), thus, it incorporates
the golden braid architecture as proposed by Hofstadter [20]. In this architecture,
the instance-of-relation between class and object is enriched by a specialization-
relation. Thus, the concept class is a specialization of the concept object. There-
fore, a class can be instantiated to another class, i.e., it enables a recursive
language architecture. Hence, FMML* allows for an arbitrary number of classi-
fication levels. Furthermore, as all classifications levels are in the same model,
there is no strict separation of language levels. It is to notice that FMML* also
provides the concept inheritance in addition to the instantiation.

Moreover, FMML* contains the concept of intrinsicness which allows a dif-
fered instantiation of attributes, operations and associations. Intrinsicness assign
an instantiation level to those entities [16], i.e., they would be instantiated on
the corresponding classification level. Therefore, the dichotomy between instan-
tiation and specialization is relaxed, as attributes, operations and associations
can be instantiated as well as inherited from one classification level to the next
lower level. A similar concept is the potency of the Deep Instantiation [5].

M1
att1 : boolean att1:=true att2 : = true

att2 : boolean

Fig. 1. Notation FMML*

The notation of FMML* is similar to the notation of UML class diagrams.
Beyond this, the classification level is indicated by the background-color of the
name-box: My is visualized by a green background of the name-box, My by
red, M3 by blue, My by black and M; by white (cf. Figure 1). Intrinsicness is
presented as a black box with a white number (i.e., the instantiation level) in
front of the feature’s name (cf. Figure 1).

XModeler (also known as XMF) is a language execution engine [12,11,16].
As explained, XModeler’s metamodel is XCore, thus, XModeler allows for an
arbitrary number of classification levels as well.

XModeler does not only support the creation of models on several classifica-
tion levels, but it also allows for model execution. Each entity of the system is
not only a model but also source code. A modification of the model implies a
modification of the source code, and vice versa. Due to this shared representa-
tion, each entity can be executed. Thereby, execution is not limited to querying
model elements, but each entity can be enhanced by algorithms for an execu-
tion in the sense of a complete programming language [12,11]. For this reason,
XModeler provides XOCL (eXecutable OCL) which is an enhanced version of
OCL (Object Constraint Languages) that comprises imperative features [11].

The usage of FMML* in combination with XModeler’s capabilities for mod-
eling and programming constitute an integrated environment. The UI design
and the UI execution is performed in the same system. Hence, there are no is-
sues related to the synchronization of a design and an execution environment.
Therefore, a Ul can directly be executed without further effort after designing
respectively modifying it.

Furthermore, the integrated environment can also serve as a live-editor. This
means, that such a multilevel approach is not limited to modifying a model and
executing it afterwards, but it is capable of modifying a model and adapting
corresponding Uls during runtime automatically. Those capabilities enable a
tight interweaving of the development and the test of a Ul

5 A Prototypical Multilevel MBUID Approach

Following, a prototype is presented which constitutes a rudimentary multilevel
MBUID approach. As already discussed, the selected multilevel paradigm is the
configuration of FMML* and XModeler. This prototype implements selected
aspects only in order to illustrating the capabilities of a multilevel approach
for MBUID. Therefore, this approach neglects features of prevalent approaches
(e.g., the consideration of task models or an explicit visual notation). However,
this approach is intended to illustrate a potential solution for the discussed
requirements.

As the application of FMML* and XModeler constitutes an integrated envi-
ronment, it is not sufficient to focus only on the UI design, but it is necessary
to consider also the execution. Therefore, an adequate language architecture has
been developed which supports both (Figure 2).

The language architecture is inspired by the MVC-Pattern [28]. In this pat-
tern, a Controller is in charge of synchronizing a Model with a View. Conse-
quently, if there are two Views for one Model, there are also two Controllers.
As those controllers relate to the same model, there is a high chance, that both
controllers access the same aspect, thus, there is presumably redundant source
code.

Model-bound
Controller

References
Model

References
View

Instance of Instance of Instance of

References References 8
Model Instance ysvtEenesany Controller Instance suviwm . View Instance

Fig. 2. Language Architecture

Instance of

The language architecture presented in Figure 2, utilizes the multilevel mod-
eling in order to overcome this threat of redundancy. The concept Controller is
divided into two concepts: the Model-bound Controller and the Controller. While
a Model-bound Controller implements the methods necessary to access a Model,
a Controller is an instance of a Model-bound Controller and implements the
access methods for the View. Due to the instantiation relation between Model-
bound Controller and Controller, the access methods for the models can be
implemented in the Model-bound Controller once and reused by each Controller.

It is to notice, that the arrangement of the language architecture should not
be mistaken with a dedicated assignment to classification levels, e.g., the position
of the concept Controller in Figure 2 does not necessarily assign it to M1. On
the contrary, our current research indicates that the concept Controller should
also be differentiated over several classification levels.

However, for the purpose of this paper, a small subset of the domain of dis-
course is selected, which allows to satisfy the identified requirements. Therefore,
the tmplemented language architecture comprises only three classification levels:
My, M; and My. The levels My and M; are for designing a UI for an existing
model; the level My represents the execution of the designed UI. That is, the
elements of the running Ul are actual instances of the Controller respectively of
the View. Following, the specified language concepts for the View and for the
Controller are presented.

The View is based on the language concepts presented in Figure 3. These
concepts serve for developing a library of all supported VisualizationElements.
Furthermore, Figure 3 contains selected instantiations, i.e., elements of such a li-
brary. VisualizationElements are distinguished in Widgets and VisualizationFea-
tures. Widgets constitute those elements which are for interaction (e.g. Buttons,
Radiobuttons or Checkboxes). In contrast, VisualizationFeatures serve to char-
acterize the Widgets (e.g., the widget’s background-color or foreground-color).

The selected instantiations of the language concepts contain an abstract con-
ception of the Formular Widget, which is the supertype for all form-widgets. As an
exemplary specialization, the already mentioned Widgets Button, Radiobutton
and Checkbox are presented. For each FormularWidget, both the foreground-

VisualzationElement

name : String

constructor : Constructor

Event

VisualzationFeature

applyFeature : Operation

Color ; VisualzationFeature

red :int
green:int
blue :int

<« requiresFeatures

-« backgroundColor 0.*

¥ isDisplayed : boolean
paint : Operation

FormularWidget : Widget

<« foregroundColor 0.*

x:int
y:int
length :int

height :int
isDisplayed : boolean

Button : Widget
text : String

Radiobutton : Widget
isChecked : boolean

Checkbox : Widget
isChecked : boolean

Fig. 3. Language Concepts for the View and Selected Instantiations

color and the background-color have to be specified. Thus, Formular Widget has
two associations to the feature Color.

The language concepts which are specified for implementing the Model-bound
Controller, the Controller and the Controller-Instance are presented in Figure 4.
As the model is mainly intended to illustrate the associations between the con-
cepts, most of the attributes are faded out. The included language concepts refer
to elements which support the development of both, the View and the Model.
Elements of the View (cf. Figure 3) are marked with a green box with ‘VM’. The
Model is created with FMMLX, thus, those concepts are part of XCore. Hence,
those elements are marked by a yellow box with ‘XCore’.

The superclass for controllers is the ElementXWidget which describes that
there is a Controller which connects a Model-element with a View-element. The
ElementX Widget is specialized into AttributeX Widget and MetaclassX Widget.
Those concepts describe the specific relation of an attribute respectively a meta-
class to any kind of Widget. AttributeX Widget and MetaclassX Widget are con-
nected via three relations: hasAttribute Type on Mo, displayAttribute Type on My
and displayAttribute on Mg. Those three relations are necessary concepts as they
describe different circumstances: hasAttribute Type comprises all attributes pos-
sessed by a class; displayAttributeType describes those attributes which are part
of a Ul, displayAttribute relates to those attributes which are actually shown by
a running UI, i.e., it relate to potential customization.

ElementX Widget features a relation ViewRelation on M; for associating the
View. Such a relation can either be associated with a Widget (WidgetRelation)
or a VisualizationFeature (FeatureRelation). The WidgetRelation contains a ref-
erence to a Widget as well as a number of Configurations. A Configuration refer
to a number of VisualizationFeatures and is valid in a specific context, e.g., for

m(visualizationFeature m

ViewRelation

name : String

- 0.*
Device VisualizationFeature 1.1 ?Df ? FeatureRelation
name : String . name : String name : String

resolution :int

VisualizationElement

itedforDevice B>

« target

o hasConfigurations

()
*
o
ol
3 « widget
=
o N o
e

[hasviewTypes DI

Location FollowingScreenRelation

= Widge

name : String

name : String name : String

0.% T ¥
0 0.* definedForRole P>

definedForPerson P

* | o 0.* 0.*
0.. v

guard : XOCLExpression

description : String

0.1 0.%

[hasviews [

« source

sRootElementll

TimeFrame User fulfils B> Role ElementXWidget EventHandler
*
name : String name : String | 0..* 1.*| name : string isDisplayed : boolean handleEvent : Operation
fromTime : Time i name : String eventHandler : Operation
toTime : Time 0.T
el subsumes P> 1.1
[dhaseventhandler

XCore

Metacdlass

refersTo p _

XCor
Attribute 1.1
« refersTo

AttributeXWidget

isDisplayed : boolean isDisplayed : boolean
name : String name : String

MetadassXWidget

.
0.4

0T
@ hapAttributellyp
[l displaysAttributeType [l

[l displaysAttribute [

0.1

xcore = part of XCore
= part of Visualization Model

Fig. 4. Multilevel MBUID Metamodel

a given device, a given role or a given user. Thus, it is possible to customize the
appearance of a View to a specific device, a group of persons (i.e., to roles) or
even to a specific user. Furthermore, it is also possible to connect a Controller
to a VisualizationFeature, i.e., it is possible to adapt a VisualizationFeature —
and therefore, a View — according to information stored in the Model.
Moreover, each Controller might be the root-element of a Screen and may
have EventHandlers. Screens logically bundle Controllers which View’s consti-
tute one UL Therefore, Screen refers to one root-element which might contain
further controllers. Thus, the elements of one UI are ordered hierarchically.

FEventHandlers are in charge of dealing with events triggered by the Model
or a View. Therefore, handlers allow for detecting user interactions and serve
for notifying the controller about changes in the Model respectively View. Fur-
thermore, some events might require displaying another View. For example,
after sending a search query, a View has to be displayed which presents the
results. Therefore, an FventHandler might be connected to a Screen via a Fol-
lowingScreenRelation. A corresponding Screen is displayed if the guard-condition
(i.e., a XOCL-Expression) is satisfied.

The defined Controllers and View-elements on M; can be executed by in-
stantiating those elements to My. A running Ul consists of a Controller-Instance
which is connected to a corresponding VisualizationElement on My (cf. Figure 4).

Bwewsiy

[| ewen

B <
3

Buwoisn) | a(osuc X

_ uaaudg
. cocserensono i
, “
I ~)
s N 1
’ . 1
’ ~
I | / [| “] [| uon
pIucH / £4M N *OQAOYDIXAIAS T3ucd uope|
’ S \ A =
/ ; T \ \ T
/ . l \ v 1 126
, ’ 1 \ \ 1 ROPIMX
/ ’ 1 / \ | 13bp
s s ! M 1 5,
s , 1/ [- 1 \ o , 1] 16pIMX
/ N \ ———— a
TeTay ﬁuuu# €3uoD _n 7 pTaTIA¥A] * ,Emdiw,ﬁ.xmi_:n:41 Y THM xog 7
\ \
\ = AN - v
\ | A ! 3ebpIm:
\ ! Y ! 1361
\ | N |
N 1 " I =
N | [] | 3 | [|
a 2505 _. ||||| _ T _. Ema:mim_ﬁ% ||||| 4 RORRASWOIIND * EpT————, :
(5|2t
7 (sseians)ss
. (ssepql A Suswag mzz_
N Insjanquayp: I .
"\ (ssejagns)e :Mm.ﬁamm dIAST spodw) aBeue
~ . m:auum SWeu3IsITY Sjualed abeuRp L
uTIS [uey asweysny [<
N spoduw) 3l [Zawoneng P399S5 212120 € oueserp [
\\\\\\ N Suaueq al uong MAN PPY R ~
- pa1daias i o | pieoqdi 03 Adod = Y
’ wonng e (owesbeip)siawosny WOAIM qaloig 7
jonanf Bnaaq asmoid a3
z eoqd)|D ¢
i Al X o [135739vNI"ON] [dofanap] saPpowy;
s Pa133i3s
- woc

@

Fig. 5. Screenshots of the Ul-creation using the XModeler

Figure 5 presents an application of the implemented prototype. It aims at

illustrating the development of a form for creating new customers. In this exam-

ple, the Customer is characterized by the attributes name, firstname and isVIP

(1). For the UI creation, a corresponding Model-bound Controller is created, first

(2). Following, it is instantiated to a Controller and a corresponding View (3).
By a further instantiation, the UT is executed, i.e., the form is shown (4).

6 Evaluation

Following, it is elaborated, how FMML* and XModeler in general and the pre-
sented prototype in particular, are able to satisfy the identified requirements for
MBUID.

R1 Foster Productivity & R2 Foster Reuse: The FMML* allows for
an arbitrary number of classifications levels, thus, concepts can be defined on a
high level of abstraction and be refined on lower levels. Due to Intrinsicness it
is furthermore possible to specify knowledge regarding low levels of abstraction
already on a high level of abstraction. This hierarchy of concepts allow to relax
the tension between productivity and reuse [16]. Concepts on a high level of
abstraction are generic, thus, they can be reused in a wide range of scenarios.
Furthermore, concepts on a low level of abstraction are semantically rich, thus,
they foster productivity. Hence, multilevel modeling enables MBUID approaches,
which satisfy both R1 and R2, e.g. in the presented prototype the relaxation is
visible in two concept hierarchies: First, the MVC-concept Controller is refined
over three abstraction levels (Model-bound Controller, Controller, Controller-
Instance). Second, the abstract concept Widget is instantiated into the Button,
Radiobutton and Checkboz, which are instantiated into corresponding instances
in a UL

R3 Transparent Propagation of Modifications: FMML* and XModeler
maintain a shared conceptualization of model and source code. Due to this con-
ceptualization, changes in a model imply changes in the source code. Hence, there
is no necessity to implement error-prone mechanisms for model transformations.
In terms of MBUID approach, changes in a model imply a direct adaption of the
corresponding Ul during runtime. Thus, FMML* and XModeler allow to trans-
parently propagate changes during runtime. Looking at the prototype, changes
in the underlying Controller-Instances and the View-Instances lead immediately
to an adaption of the UI. Furthermore, changes to the state of the Controller,
the View or the Model-bound Controller influence also the resulting Ul

R4 Extensibility of Language and Adaptability of Tool: By applying
FMML* and XModeler, the definition and the application of a MBUID approach
are not strictly separated as both are contained in one multilevel model. Thus,
enhancements of the approach are directly usable due to the R3 Transpar-
ent Propagation of Modifications. Thus, FMML* and XModeler enable ap-
proaches which are extensible and provide an adaptable tool (e.g., the presented

prototype).

7 Conclusion

In this paper, we applied a multilevel paradigm to the MBUID-field with the
aim to show its advantages for the creation of Uls. For this reason, requirements

related to the development Uls were identified which support an effective and
efficient model-based development process. Against those requirements, the lim-
itations of the traditional paradigm has been shown. In order to overcome these
limitations, a multilevel approach consisting of the multilevel modeling approach
FMML* and language execution engine XModeler has been suggested. In that
context, it is discussed, how such a multilevel approach can satisfy the require-
ments for a model-based Ul development. As a proof of concept, a rudimentary
prototype has been designed and implemented, which illustrates the potential of
multilevel modeling and a corresponding language execution engine for MBUID.

As the developed approach presents only a rudimentary prototype, future
work targets at the development of a comprehensive multilevel MBUID ap-
proach. For this purpose, it is not sufficient to transfer features of existing
MBUID approaches to a multilevel MBUID approach, but it is necessary to
identify potential for improvement concerning prevalent approaches. Further-
more, it would also be desirable, to not restrict the UI creation to a primary
manual task, but to support an automatic generation of Uls. Moreover, it would
also be promising to incorporate further interaction technologies in order incor-
porate further senses in the human-computer-interaction. Those investigations
constitute our future work.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.:
UIML: An appliance-independent XML user interface language. Computer Net-
works 31(11), 1695-1708 (1999)

2. Akiki, P.: Engineering Adaptive Model-Driven User Interfaces for Enterprise Ap-
plications. phd, The Open University (Sep 2014)

3. Al-Hilank, S., Jung, M., Kips, D., Husemann, D., Philippsen, M.: Using multi level-
modeling techniques for managing mapping information. In: MULTI@ MoDELS.
pp. 103-112 (2014)

4. Atkinson, C., Gutheil, M., Kennel, B.: A Flexible Infrastructure for Multilevel
Language Engineering. IEEE Transactions on Software Engineering 35(6), 742—
755 (Nov 2009)

5. Atkinson, C., Kiithne, T.: Reducing accidental complexity in domain models. Soft-
ware & Systems Modeling 7(3), 345-359 (2008)

6. Atkinson, C., Kiithne, T.: In defence of deep modelling. Information and Software
Technology 64, 36-51 (Aug 2015)

7. Blumendorf, M., Feuerstack, S., Albayrak, S.: Multimodal User Interfaces for Smart
Environments: The Multi-access Service Platform. In: Proceedings of the Working
Conference on Advanced Visual Interfaces. pp. 478-479. ACM (2008)

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for multi-target user interfaces. Interacting
with Computers 15(3), 289-308 (Jun 2003)

9. Carvalho, V.A., Almeida, J.P.A.: Toward a well-founded theory for multi-level
conceptual modeling. Software & Systems Modeling pp. 1-27 (2016)

10. Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: A foundation for multi-level
modelling. In: MULTI@ MoDELS, pp. 43-52. Tilburg University (Sep 2014)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Clark, T., Sammut, P., Willans, J.: Applied Metamodelling A Foundation For
Language Driven Development: Second Edition. Ceteva (2008)

Clark, T., Sammut, P., Willans, J.: Superlanguages: Developing Languages and
Applications with XMF. Ceteva (2008)

Collignon, B., Vanderdonckt, J., Calvary, G.: Model-Driven Engineering of Multi-
target Plastic User Interfaces. In: Fourth International Conference on Autonomic
and Autonomous Systems (ICAS’08). pp. 7-14 (Mar 2008)

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621-645 (2006)

France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: 2007 Future of Software Engineering. pp. 37-54. IEEE Com-
puter Society (2007)

Frank, U.: Multilevel Modeling. Business & Information Systems Engineering 6(6),
319-337 (Nov 2014)

Frank, U.: Enterprise modelling: The next steps. Enterprise Modelling and Infor-
mation Systems Architectures 9(1), 22-37 (2015)

Frank, U.: Designing Models and Systems to Support I'T Management: A Case for
Multilevel Modeling. In: MULTI@Q MoDELS. pp. 3-24 (2016)

Gerbig, R.: Deep, Seamless, Multi-Format, Multi-Notation Definition and Use of
Domain-Specific Languages. Ph.D. thesis, Verlag Dr. Hut (2017)

Hofstadter, D.H.: Gdédel, Escher, Bach: An Eternal Golden Braid. Basic Books,
New York (1979)

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lépez-Jaquero, V.:
USIXML: A language supporting multi-path development of user interfaces.
EHCI/DS-VIS 3425, 200-220 (2004)

Marin, I., Ortin, F., Pedrosa, G., Rodriguez, J.: Generating native user interfaces
for multiple devices by means of model transformation. Frontiers of Information
Technology & Electronic Engineering 16(12), 995-1017 (Dec 2015)

Meixner, G., Paterno, F., Vanderdonckt, J.: Past, Present, and Future of Model-
Based User Interface Development. i-com 10(3), 2-11 (Nov 2011)

Myers, B.A., Rosson, M.B.: Survey on User Interface Programming. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. pp.
195-202. ACM (1992)

Neumayr, B., Griin, K., Schrefl, M.: Multi-level Domain Modeling with M-objects
and M-relationships. In: Proceedings of the Sixth Asia-Pacific Conference on Con-
ceptual Modeling - Volume 96. pp. 107-116 (2009)

Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Transactions on Computer-Human Interaction (TOCHI) 16(4), 19
(2009)

Puerta, A.R., Szkeley, P.: Model-based Interface Development. In: Conference
Companion on Human Factors in Computing Systems. pp. 389-390. ACM (1994)
Reenskaug, T.M.H.: The original MVC reports. Tech. rep., Dept. of Informatics,
University of Oslo, Oslo (1979)

Vanderdonckt, J.: Model-driven engineering of user interfaces: Promises, successes,
failures, and challenges. Proceedings of ROCHI 8 (2008)

Wiehr, C., Aquino, N., Breiner, K., Seissler, M., Meixner, G.: Improving the Flex-
ibility of Model Transformations in the Model-Based Development of Interactive
Systems. UsiXML p. 46 (2011)

