
An Example Application of a Multi-Level
Concrete Syntax Specification with

Copy-and-Complete Semantics

Jens Gulden

University of Duisburg-Essen
Universitätsstr. 9, 45141 Essen, Germany

jens.gulden@uni-due.de

Abstract. This paper describes an example application of the Topol-
ogy Type Language (TTL) to define visualizations for conceptual models
with multiple type levels. Based on a multi-level example model about
the domain of bicycle products, a formal specification for a diagram visu-
alization is developed which visually displays characteristics of bicycles
and their components according to the domain model.
The result is an example specification of a diagram visualization that in-
corporates characteristics of model elements from different type-levels of
a domain-specific conceptual multi-level model into one consistent visu-
alization specification that can be reused to visualize entities on different
abstraction levels in the domain model.

Keywords: Multi-Level Modeling, Domain-Specific Modeling Lan-
guage, Diagram, Topology, Visualization, Concrete Syntax

1 A Visual Formalism for Specifying Visualizations

1.1 Overview

The Topology Type Language (TTL) is being developed to serve the purpose of
specifying visualizations of diverse kinds for models. It is intended to describe
model representations of various visual forms, such as diagrams or graphical user
interfaces, together with corresponding human interactions. Especially, the TTL
is being developed as an advanced specification formalism for concrete syntaxes
of domain-specific modeling languages. Among others, it fulfills three central
requirements:

Req. 1: The description of a visualization happens entirely independent from a
model, i. e., the visualization can be defined without restrictions imposed
by the meta-model of the visualized language.

Req. 2: The specification mechanism can refer to meta-models with multiple type
levels. It describes a notion of instantiating topology types in multiple
refinement steps which can be mapped to the conceptual type-level hier-
archy of a multi-level meta-model.



Req. 3: The approach provides a visual formalism to describe topologies. Al-
though the description of topologies is an abstraction over a visualization
and does not describe the visualization itself, the use of a visual language
to specify topologies appears appropriate as it promises a higher level of
cognitive efficiency and advanced ease-of-use than a textual formalism.

Figure 1 shows the example TTL model which is introduced in this use case
demonstration.

Fig. 1: Example visualization specification for a bike product type

Some central considerations that have guided the development of the TTL
are briefly described in the following.

Decoupling Visualization Description from Conceptual Description In
fact, it is a major shortcoming of existing approaches such as the Eclipse Graph-
ical Modeling Framework (GMF) [5], that the use of different types of visual
elements that determine the visual structure and composition of the syntax,
such as line connectors, or nesting elements inside each other, can only be used



in combination with fixed meta-model concepts. For example, a visual nesting of
things, in which elements are placed inside an outer element, requires the meta-
model to contain a composition relationship between the nested concepts. The
use of line-connectors to show relationships between elements, on the other hand,
demands for non-containment associations to be present between the classes of
the connected elements in the meta-model, and cannot be applied to associa-
tions that are considered to be compositions from a conceptual point of view –
although the decisions whether to model a relationship as association or as com-
position may be contingent in the modeled domain, and should not influence
the shape of possible visualizations that can be specified as a concrete syntax.
(Technically, from the point of view of a programming language, associations
and composition relationships are implemented the same way anyway.)

As a consequence, it turns out to be necessary for a specification mechanism
for model visualizations, to introduce a layer with intermediary specification
concepts, which serves to decouple the structure of the described visualizations
from the structure of the meta-model that is underlying to the (domain-specific)
conceptual language the concepts of which are visualized. The approach provided
with the TTL does so by abstracting visualizations to topologies, which can
initially be described without any references to a modeling language and its
instances, and only at a later stage during the specification of the visualization
are bound to concrete model instances (see the following section).

The actual binding between topology content and model content happens
by describing conceptual relations of model content, and optionally transform
model content with the help of lenses. These two concepts are not of central
relevance for the example shown here, they will thus be described elsewhere.

Instantiation by Copy-and-Complete Semantics The specification lan-
guage supports a notion of Abstract Areas versus Concrete Areas, and in addition
it allows to specify a sequence of Completion Steps that constrain how an Abstract
Area is supposed to be transformed to a Concrete Area, in order to make it vi-
sually renderable. Among other linkages to multi-layer or multi-step application
contexts, these constructs in combination allow to reflect a notion of topology
types which over multiple levels of abstractions get instantiated to a concrete
topology. As this procedure is applied to a visual formalism, it makes sense to
rather describe the differences between types and instances in terms of missing
versus provided elements, which is why an operational copy-and-complete seman-
tics to turn a type description into an instance, seems appropriate to describe a
visual type system.

Following such a copy-and-complete procedure, the transformation from ab-
stract to concrete topology type descriptions happens in an n-step transforma-
tion process, in which underspecified parts of the topology type description are
completed step by step, until no more underspecified parts exist. Figures 7 and
8–1 show the example copy-and-complete procedure that is applied to create the
topology type description for the example domain model.



1.2 Language Elements

Those language elements of the TTL that are used in the example presented in
this paper are briefly explained in the following.

Area The Area concept is the central model element to specify topologies. It
provides the fundamental structure element to describe visualizations. Areas are
assumed to have a spatial extension and can be nested into each other. Every
area has a location that may be relative to other areas, and to its parent area (if
exists). Areas are notated by slightly rounded squares with a dashed line border
(see Fig.2).

Areas provide templates for renderers. Areas do not define their visual ap-
pearances by themselves, but they provide space for renderers to work in. They
also provide data for renderers to work on. The notion of a renderer refers to
program code that uses the topology type description and bound values from
the domain model as input to actually display visualizations on top of a con-
crete graphics rendering technology. From the conceptual point of view of the
TTL, renderers can be implemented using arbitrary technology. Different ren-
derers may be responsible for displaying the same topology type description via
different document formats, or on different devices. The wide range of realiza-
tion options for renderers is not in the focus of this paper and will be discussed
elsewhere.

An area can be associated with a type. Visually, types are distinguished by
different colors. The definition of available types is indicated by small squares in
the top section of an area.

Figure 2 shows Area notation elements nested inside each other, with the
parent area defining two distinct types, that are applied to the nested areas.

Further details on the specification of Areas are out of the scope of this paper
and will be discussed elsewhere.

Locator A Locator serves the purpose to formally describe spatial relationships
between Areas. The visual presence of a Locator in a model, that connects two
or more areas with each other, semantically only means that there is an explicit
statement on how the respective areas are related to each other. The actual kind
of spatial relationship is non-visually specified via the properties-sheet of the
Locator. There are multiple options to actually implement a formal description
scheme for spatial relations. One possibility is to recur to a 2D spatial version
Allen’s interval algebra, as it is elaborated in [16], which list all possible kinds
of spatial relations that bodies can have on a diagram plane, e. g., overlapping,
touching containing, etc.

The spatial placement of a Locator inside an area and in relation to its con-
nected areas, as it appears in a TTL diagram, is a pure visual hint for the
topology modeler that may of may not visually resemble the actual placement
the Locator is expressing.



Fig. 2: Notation of Area elements

For the purposes of the example presented here, a simple notion of locators
that specify an absolute distance and direction between the two connected areas
is sufficient.

The visual notation of a Locator is shown in Fig. 3.

Fig. 3: Notation of a Locator element (middle circle) with Locator Links to two
areas (dashed lines)

Abstract Areas versus Concrete Areas In order to provide a notion of
instantiability of abstract topology types to concrete ones, the notion of regard-
ing an incomplete specification of a topology as abstract, and a fully specified
topology as concrete which can serve as input to a renderer, can be broken down
to individual Areas. An Area which is not yet fully specified to serve as input
to a renderer is considered abstract, while an Area which provides all necessary
information to be rendered is concrete.

There are three ways to make sure an Area can be rendered, i. e., to concretize
an Abstract Area to a Concrete Area:



– Children Areas are added (every Area that contains at least one child Area
is considered to be concrete, because a default renderer can be applied)

– Conceptual Relation Specifications are added to all Conceptual Relation place-
holders that an Area contains (Conceptual Relation Specifications bind ele-
ments from the data population of an area to parameters of renderers)

– An Area Reference to a Concrete Area is added, which has the effect that the
referenced Area is filled-in in the place of the referencing one

The first two options can be combined, given that the configured renderer
both processes children Areas and Conceptual Relations. In the special case that
a Renderer which has no parameters at all is assigned (e. g., a visual decorator),
an Area is also considered to be concrete.

The notation of Conceptual Relations and Conceptual Relation Specifications
is shown in Fig. 4. Further details about the Conceptual Relation concept are not
required for the example case presented here and will be discussed elsewhere.

(a) (b)

Fig. 4: Notation of the Conceptual Relation element inside an Area element, (a)
abstract requirement, (b) filled in with concrete Conceptual Relation Specification

Completion Step Abstract Areas can be assigned with Completion Step tags,
that allow to specify a minimum and / or maximum number of concretization
steps, until the Abstract Area either has be made concrete, or optionally is re-
moved. In general, Completion Step tags allow to specify any finite sequence of
modes that subsequent concretization steps have to conform to.

The three distinguishable modes of how to perform a single completion step
on an Abstract Area are:

– Preserve: the Abstract Area is not completed and remains abstract in the
current completion step

– Optional: the Abstract Area may be completed, remain, or be deleted in the
current completion step

– Complete: the Abstract Area must be completed with a concrete topol-
ogy description, either by assigning a renderer to the area, describe a sub-
topology in the area, or reference another area which is concrete



Figure 5 shows the notation of Completion Step tags as a sequence of differ-
ently drawn small circles in the upper right top part of an area symbol, together
with a brief legend explaining the three different modes of appearances of the
circles.

Fig. 5: Notation of Completion Step tags (shown as circles in the upper-right
corner of an area)

The sequence of Completion Step tags, from left to right, represents the up-
coming concretization steps that the topology type description will undergo. The
very next step is configured by the left-most Completion Step tag in the sequence.
When a topology type description is transformed to a next concretion step (a
procedure that can be seen in analogy to instantiating a type entity into an
instance on one abstraction level lower), all Areas get copied, and the left-most
Completion Step tag is removed from the sequence in any of the areas.

The ability to impose constraints on anticipated future concretization steps
provides a mechanism which stands in analogy to the specification of intrin-
sic features in a multi-level modeling language [7]. This means, the sequence
of concretization steps can be defined along the instantiation levels of entities
from a multi-level conceptual domain model. Using Completion Step tags, the
demand for when to fill in Conceptual Relation specifications can be delayed in a
controlled way. A topology type definition can make use of this to define Concep-
tual Relations on the basis of intrinsic attributes on higher levels of conceptual
abstractions in the domain model, for which the concrete values will later be
derived from slot values of entities on lower levels. This makes the TTL a visual-
ization specification approach that integrates the description of visualizations for
conceptual entities on different levels of conceptual abstractions into one unified
specification mechanism. It allows for an efficient declaration of concrete syn-
taxes for domain-specific type models, together with concrete syntaxes for their
instance models across multiple type levels.



2 Example Application of a Bike Product Visualization
Based on a Multi-Level Conceptual Domain Model

The example domain model that conceptually describes the bicycle product do-
main is displayed in Fig. 6. It has been created with the multi-level modeling
language FMMLx [7] as a contribution to the MULTI 2017 Challenge [3]. The
design decisions that led to the conceptual domain model are described in [9].

Fig. 6: Example Conceptual Model of a Bike Product Domain

The model in the TTL shown in Fig. 1 is the result of a multi-step transfor-
mation from a more general TTL model to a concrete visualization description
for “Pro Racing Bikes”. The procedure of the transformation is described in the
following, starting with the initial TTL model shown in Fig. 7 that generally
describes the notion of any bike visualization without a connection to concrete
data to be rendered.



Fig. 7: Example visualization specification for the generic notion of a bike, as
modeled on the highest abstraction level in the domain model

2.1 Initial model

The TTL model in Fig. 7 provides a general description of what a visualiza-
tion of a bike product could be composed of. The description is independent
from any binding to model content yet, but by specifying several empty Concep-
tual Relationship elements in its area elements, it already suggests what domain
characteristics should influence a resulting rendered visualization.

The Completion Step elements in the upper-right corners of each area part
suggest how to further complete this topology type description in the next con-
cretization step. The outer “Bike” area specifies a single further Completion Step,
which demands to concretize this area specification in the next subsequent step.
The other areas each define three subsequent concretization steps, with the first
demanding to leave the area untouched in the next step.

2.2 First concretization step

As a consequence, in the next step the outer “Bike” area is made concrete by
filling in the previously empty Conceptual Relation element “background” with



a binding that provides input data from the visualized model as input for the
renderer that is configured for the “Bike” area. In case of the example at hand,
this could mean that either based on the class name of a bike entity to be dis-
played, or as a result of combining the suitedForToughTerrains and suitedForRaces
slot values, a suitable name for a background image is calculated. E. g., a ren-
derer could be configured which displays a background image of a mountain
scenery for mountain bikes, a street scenery for city bikes, and a racing track
for racing bikes. There are diverse options for realizing such a binding on the
implementation level, further details are not discussed here.

Figure 8 shows the topology model after the first concretion step has been
performed.

Fig. 8: Example visualization specification distinguishing the notion of general
types of bikes (racing/mountain/city), as modeled on the second-highest ab-
straction level in the domain model

If at this point also renderers are attached to the other areas, which could
render a generic visualization of the respective elements they are to display
even without concrete input values (e. g., by using pre-defined default values as



long as the Conceptual Relations for the respective area are not fully specified),
then the visualization description could already be used for rendering a generic,
product-independent, visualization of a bike.

2.3 Second concretization step

To provide a further refinement of the visualization specification, the next con-
cretization step reuses the topology type description in Fig. 8 and enhances it in
order to visualize specific characteristics of racing bikes described in the domain
model. To do so, additional Conceptual Relations are added to the “Frame” area
which represent the domain fact that the frames of racing bikes are described by
three lengths values. Adding further Conceptual Relations is possible, because the
Conretization Step specifications for the current step allows optional modification
to the area. The resulting topology type description after this step is displayed
in Fig. 9.

Fig. 9: Example visualization specification incorporating characteristics of “Pro
Racing Bikes”, as modeled on level 2 in the domain model



2.4 Third concretization step

The remaining Concretization Step elements in the model in Fig. 9 all demand
for a completion of the yet underspecified areas. As a consequence, the final
modifications to the model in the third concretization step consist of filling
in the empty Conceptual Relation placeholders with bindings to concrete input
value that can be derived from domain model entities on abstraction level 1.
According to the declarations of intrinsic attributes in the domain model, this is
the level where the information is present that distinguishes visual characteristics
of different bike products.

Figure 1 shows the resulting concrete renderable topology type description
for “Pro Racing Bikes”, as described in the domain model.

3 Related Work

Specifying concrete syntaxes for visual diagram languages is pivotal to the design
of domain-specific languages (DSLs). As a consequence, most of the DSL cre-
ation approaches and tools available offer means for defining concrete diagram
syntaxes. Three well known representatives of the category of meta-modeling en-
vironments which offer support in visual language creation are MetaEdit+ [12],
the Eclipse Graphical Modeling Framework (GMF) [5], and Sirius [4].
These tooling environments offer mechanisms to specify conceptual features of a
domain, e. g., with a meta-model, together with functionality to define visual rep-
resentations for the domain concepts. MetaEdit+ includes a simple graphical
icon editor that allows to paint graphical symbols to represent domain concepts.
GMF also supports the definition of graphical symbols composed out of drawing
primitives, however, the specification of the symbols happens non-visually in a
tree-view editor. Sirius also uses a tree-view configuration editor for all param-
eters of its diagram definitions, with the significant difference to GMF that the
concrete syntax definition is interpreted at run-time without the need for code
generation. Any changes that are made to a Sirius diagram definition become
immediately visible in a corresponding editor.

The general approach in these tools is to enhance the conceptual description
in the meta-model with additional information about the visualization that gets
attached to the meta-model elements. This happens either by directly attach-
ing information about how to visualize a concept in the meta-model (e. g., by
the use of annotations), or by employing a mapping model that externally at-
taches additional information to meta-model elements. In both cases, one has
to be aware that a direct annotation of meta-model elements limits the range
of possible visualizations to describe, as the meta-model structure pre-forms the
possible structure of visualizations [10, 11]. None of the approaches embedded
in existing tools has been developed beginning with theoretical considerations
about the demands towards an optimal visualization specification mechanism.
The TTL aims to overcome these limitations.

Despite the prominent role of diagram languages in Information Systems, the-
oretic research about concrete syntax specification is just about to be established



as a relevant perspective on the core objectives of the discipline. Considerations
about the “Physics of Notation” [15] provide one source in Information Systems
science that summarizes fundamental principles of designing visual diagram lan-
guages. Diverse points of critique have been brought forward against the narrow
perspective taken in by [15]. Especially the potential for leveraging the capabil-
ities of the human visual perception apparatus, which allows for fast, parallel,
and scalable cognitive processing of visual pattern structures, is not sufficiently
taken into account [20, 21].

Beyond the Information Systems discipline, a wider range of scientific con-
tributions about information visualization can be found. Classical work about
diagrams from before the age of computers has been contributed by [1, 18, 19].
More recent work about the effectiveness of interactive visualizations originates
from fields such as interaction design and journalism [2, 13, 14, 17], or information
dashboard design [6]. The research demand for incorporating the perspective on
cognitive efficiency into Information Systems research has been pointed out as
well [10, 11].

4 Conclusion

The example developed in this paper has given an impression of how a visual
formalism for specifying visualization types that can represent model content on
multiple levels of abstraction can work. Core elements of the visual Topology
Type Language (TTL) have been introduced, without, however, going too much
into details to keep the example description appropriately compact.

The TTL integrates the description of visualizations for conceptual entities
on different levels of conceptual abstractions into one unified specification. This
allows for an efficient reuse of existing concrete syntaxes, and makes it possible to
specify visual languages for domain-specific type models as well as their instance
models across multiple levels in the same place.

Other aspects of the TTL with respect to its applicability to presentation
and interaction schemes beyond mere diagram visualizations, toward describing
entire applications’ user interface presentation and interactions, will be part of
future work. The TTL might as well be suited for use in self-referential enterprise
system scenarios [8], where dynamically configurable views on instance models
serve both as tools for control and analysis. The TTL could play a role in such
a setting by providing a visual specification mechanism which allows to define
instance visualizations at run-time based on existing reusable specifications of
type-level visualizations.

References

1. J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Walter de Gruyter,
Berlin, 1974.

2. Albero Cairo. The Functional Art. Voices That Matter. Pearson Education, New
York, 2010.



3. Tony Clark, Ulrich Frank, and Manuel Wimmer. The bicycle challenge of the multi
2017 workshop on the models 2017 conference, austin, texas, sept 17-22, 2017.

4. Eclipse Foundation. Eclipse sirius. https://eclipse.org/sirius/.
5. Eclipse Foundation. Graphical modeling framework (gmf).

http://www.eclipse.org/modeling/gmf/.
6. Stephen Few. Information Dashboard Design: The Effective Visual Communication

of Data. O’Reilly, Sebastopol, CA, 2006.
7. Ulrich Frank. Multi-level modeling - toward a new paradigm of conceptual model-

ing and information systems design. Business & Information Systems Engineering
(BISE), 6(3), 2014.

8. Ulrich Frank and Stefan Strecker. Beyond erp systems: An outline of self-referential
enterprise systems. Technical Report 31, ICB Institute for Computer Science and
Business Information Systems, University of Duisburg-Essen, Essen, April 2009.

9. Jens Gulden. Multi-level domain-specific modeling with the fmmlx – a contribution
to the multi 2017 challenge. 2017. Under Review.

10. Jens Gulden and Hajo A. Reijers. Toward advanced visualization techniques for
conceptual modeling. In Janis Grabis and Kurt Sandkuhl, editors, Proceedings of
the CAiSE Forum 2015 Stockholm, Sweden, June 8-12, 2015, CEUR Workshop
Proceedings. CEUR, 2015.

11. Jens Gulden, Dirk van der Linden, and Banu Aysolmaz. Requirements for research
on visualizations in information systems engineering. In Proceedings of the ENASE
Conference 2016, April 27-28 2016, Rome, 2016.

12. Steven Kelly and Juha-Pekka Tolvanen. Domain Specific Modeling: enabling full
code-generation. Wiley, 2008.

13. Andy Kirk. Data Visualization: a successful design process. Packt Publishing,
Birmingham, 2012.

14. Isabel Meirelles. Design for Information. Rockport Publishers, Beverly (MA),
2013.

15. Daniel L. Moody. The “physics” of notations: Toward a scientific basis for con-
structing visual notations in software engineering. IEEE Transactions on Software
Engineering, 35(6):756–779, 11/12 2009.

16. Mohammad Nabil, John Shepherd, and Anne H. H. Ngu. 2D projection interval
relationships: A symbolic representation of spatial relationships, pages 292–309.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.

17. Robert Spence. Information Visualization (2nd edition). Prentice Hall, Upper
Saddle River, 2007.

18. E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut, 1983.

19. E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, Connecticut,
1990.

20. Dirk Van Der Linden and Irit Hadar. Cognitive effectiveness of conceptual mod-
eling languages: Examining professional modelers. In Empirical Requirements En-
gineering (EmpiRE), 2015 IEEE Fifth International Workshop on, pages 9–12.
IEEE, 2015.

21. Dirk van der Linden, Anna Zamansky, and Irit Hadar. A framework for improving
the verifiability of visual notation design grounded in the physics of notations. In
Proceedings of the 25th IEEE International Requirements Engineering Conference
(RE 2017), Lisboa, Portugal, 2017.


