Generating Visualizations of Enterprise Architectures using Model Transformations

Sabine Buckl
Christian M. Schweda

Software Engineering betrieblicher Informationssysteme (sebis)
Ernst Denert-Stiftungslehrstuhl, Lehrstuhl für Informatik 19
TU München

wwwmatthes.in.tum.de
Visualizing the Application Landscape: Why and How? (Status Quo)
Our Approach to Generating Visualizations of Application Landscapes
Glimpse on Our SoCaTool
Why do enterprises visualize their application landscape?

Enterprise Architecture (EA) and the management thereof has recently gained rising attention in research and in practice.

Commonly, the application landscape is regarded to be an essential part of the Enterprise Architecture.

Concluding, the application landscape as part of the management body of EA management is visualized for documenting and communicating.
Visualizations like below exist in many Enterprises ...
... and they are mostly “drawn”.

Causes for this:

- No established method for the creation and maintenance of such visualization yet exists.
- Most EA management tools do not support different visualizations, especially when concerning automated positioning.

Consequences of “drawing”:

- Manual creation of the visualizations is an error prone and time consuming task.
- Visualizations therefore tend to contain aged data.
- No links between the data and the visualizations exists, therefore visualizations might display incorrect information.
- Most EA management tools provide the user with the possibility to introduce symbols without defined semantics in the context of the visualization.
How we started studying visualizations of the application landscape …

Motivation
- Increasing number of application systems
- Long lifetime of application systems
- Protect existing and planned IT investments
- Global and holistic view on the application landscape
 - Functions, processes, products,
 - Costs, benefits,
 - Lifecycles of elements, projects,
 - …

Status quo
- Models and methods for documenting and developing application systems
 - Unified Modeling Language (UML)
 - Event-driven Process Chains (EPC)
 - Entity/Relationship Diagrams (ER)
- Models and Methods for documenting and planning application landscapes
 - ???
What are the goals of the project?

- Analyze existing models and methods for documenting and planning application landscapes
- Develop a model for software maps
 - Providing possibility for automatic view generation
 - Including prototype for a software cartography tool
 - Focusing on modeling, not on drawing!
- Identify successful visual representations
 - Driven by concerns of stakeholders
 - Communication instrument from IT operators to CIOs
- Establish a common terminology for documenting and planning application landscapes
- An information model for documenting and planning application landscapes
 - Including information elements relevant for application landscapes
 - Defining attributes and relationships between these relevant elements

⇒ Models and methods for documenting and planning application landscapes
What did we achieve?

- Consolidation of different maps to three map types.
- Initial interviews with stakeholders about relevant aspects
Example 1: Cluster Map

- Partitioning maps in logical units using cluster for
 - Functional areas
 - Organizational units, ...
- Positioning the cluster manually by
 - optimizing map size
 - putting related elements close to each other
 - using enterprise standards (e.g. customer at the right side)
Example 2: Process Support Map

- Positioning along x- and y-axis
 - x-axis for business processes
 - Levels 0 up to 3
 - Linear processes
 - Notation comparable with value chains
 - y-axis for organizational units, system classes, products, etc.
Different Aspects can be visualized on a Software Map using a Layer Principle

- Visualizing aspects on layers
 - Associations between application systems and other objects (processes, business objects, ...)
 - Measures with different symbols
 - Interconnections (Interfaces)

![Diagram of layers with measures, interconnections, application systems, and a base map.](image-url)
Agenda

Visualizing the Application Landscape: Why and How? (Status Quo)
Our Approach to Generating Visualizations of Application Landscapes
Glimpse on Our SoCaTool
Our Model Transformation Approach includes a Strict Separation of Data and Representation

- Semantic Model
- Information Model
- Metamodel
 e.g. Meta Object Facility (MOF) 2.0
- Symbolic Model
- Visualization Model

Based on

Transformation
The Left Side …

Deployed Application System

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>availability</th>
<th>maintenance Costs</th>
<th>version</th>
<th>criticality</th>
<th>users</th>
<th>plannedFrom</th>
<th>plannedTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Online Shop</td>
<td>99,2%</td>
<td>4,000,00 €</td>
<td>1.0</td>
<td>1</td>
<td>50</td>
<td>01.06.2006</td>
<td>30.09.2006</td>
</tr>
<tr>
<td>120</td>
<td>Online Shop</td>
<td>99,5%</td>
<td>- €</td>
<td>1.5</td>
<td>1</td>
<td>50</td>
<td>01.12.2007</td>
<td>31.01.2008</td>
</tr>
<tr>
<td>200</td>
<td>Inventory Control System</td>
<td>99,0%</td>
<td>2,322,00 €</td>
<td>1.0</td>
<td>2</td>
<td>30</td>
<td>01.07.2006</td>
<td>30.11.2006</td>
</tr>
<tr>
<td>220</td>
<td>Inventory Control System</td>
<td>99,1%</td>
<td>- €</td>
<td>1.5</td>
<td>2</td>
<td>30</td>
<td>01.01.2008</td>
<td>31.01.2008</td>
</tr>
<tr>
<td>300</td>
<td>Monetary Transactions System (Germany)</td>
<td>98,0%</td>
<td>10,032,00 €</td>
<td>1.0</td>
<td>2</td>
<td>10</td>
<td>01.05.2006</td>
<td>30.09.2006</td>
</tr>
<tr>
<td>350</td>
<td>Monetary Transactions System (Great Britain)</td>
<td>98,1%</td>
<td>1,344,00 €</td>
<td>1.0</td>
<td>2</td>
<td>10</td>
<td>01.01.2006</td>
<td>28.02.2006</td>
</tr>
<tr>
<td>400</td>
<td>Product Shipment System</td>
<td>97,7%</td>
<td>3,131,00 €</td>
<td>1.0</td>
<td>3</td>
<td>15</td>
<td>01.05.2005</td>
<td>30.09.2005</td>
</tr>
<tr>
<td>500</td>
<td>Accounting System</td>
<td>99,9%</td>
<td>4,552,00 €</td>
<td>1.5</td>
<td>2</td>
<td>10</td>
<td>01.03.2006</td>
<td>01.05.2006</td>
</tr>
</tbody>
</table>

Information Model

- **Location**
 - name: String
 - hosted at
 - 1

- **BusinessApplication**
 - name: String
 - id: Integer
... contains Map Symbols, Visual Variables, and Visualization Rules ...

Map Symbols
- Rectangle
- Chevron
- Line
- ...

Visual Variables
- Background color
- Line size
- Line type
- ...

Visualization Rules
- Planar map symbol to planar map symbol
 - Order
 - Non-intersection
 - Partial overlap
 - Nesting
 - Alignment (horizontally/vertically)
- Planar map symbol to linear map symbol
 - Connection
..., and the Middle

rule Location2Rectangle {
 from
 infoObject : Semantic.Location
 to
 symbol : Symbolic.Rectangle (
 text = infoObject.name,
 backgroundColor = #CCCCCC
)
}

rule BusinessApp2Rectangle {
 from
 infoObject : Semantic.BusinessApplication
 to
 symbol : Symbolic.Rectangle (
 text = infoObject.name + "(" + infoObject.id + ")"
),
 rule : Symbolic.Nesting (
 inner = symbol,
 outer = transforming (infoObject.hostedAt)
)
}
Agenda

Visualizing the Application Landscape: Why and How? (Status Quo)
Our Approach to Generating Visualizations of Application Landscapes
Glimpse on Our SoCaTool
The Inside of the SoCaTool

Legend:
- Step 1
- Step 2
- Step 3
How the SoCaTool looks like
What is still to be done?

The tool is just prototypical:

- Make it easier to specify the rules of the transformation.
- Make the layouter more powerful, especially concerning linear symbols.
- Enable interactions with the visualizations:
 - Semantic preserving ones
 - Semantic changing ones
- Incorporate an add-on for calculating application landscape metrics.
- …
Thank you very much!

Discussion...

For more information about the project:
www.softwarekartographie.de (in German)